--

13(2)2023

Preliminary evaluation of human hair follicle-derived dermal papilla cell characteristics


Author - Affiliation:
Dao Thi Thanh Thuy - University of Science, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Phan Van Tien - University of Science, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Van Duc Huy - University of Science, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Nguyen Thi Ngoc Nhu - University of Science, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Phan Lu Chinh Nhan - University of Science, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Nguyen Ton Ngoc Huynh - DNA International Hospital, Ho Chi Minh City , Vietnam
Dang Thi Tung Loan - University of Science, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Corresponding author: Dang Thi Tung Loan - dttloan@hcmus.edu.vn
Submitted: 05-06-2023
Accepted: 13-06-2023
Published: 31-10-2023

Abstract
Dermal Papilla Cells (DPCs) are mesenchymal cells residing at the base of the hair follicles. They play an important role in the hair cycle remodeling and hair follicle regeneration. In this study, DPCs were isolated, and cultured from human hair follicles and evaluated the expression of -SMA, versican by immunocytochemistry, and alkaline phosphatase activity. The human fibroblasts were used as a control to confirm the non-fibroblast DPCs. The results showed that the cells grew from the hair bulb and had fibroblast morphology. These bulb cells strongly expressed alkaline phosphatase activity -SMA, and versican while the human fibroblast lacked ALP activity and less expression of -SMA and versican. In conclusion, the protocol is established to isolate and culture DPCs from hair follicle bulbs, and ALP activity is suggested as the major marker for distinguishing DPCs and human fibroblasts.

Keywords
characteristic; dermal papilla; fibroblast; hair follicle; human

Full Text:
PDF

Cite this paper as:

Dao, T. T. T., Pham, T. V., Van, H. D., Nguyen, N. T. N., Phan, N. L. C., Nguyen, H. T. N., & Dang, L. T. T. (2023). Preliminary evaluation of human hair follicle-derived dermal papilla cell characteristics. Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 13(2), 3-11. doi:10.46223/HCMCOUJS.tech.en.13.2.2801.2023


References

Bejaoui, M., Taarji, N., Saito, M., Nakajima, M., & Isoda, H. (2021). Argan (Argania Spinosa) press cake extract enhances cell proliferation and prevents oxidative stress and inflammation of human dermal papilla cells. Journal of Dermatological Science, 103(1), 33-40. doi:10.1016/j.jdermsci.2021.06.003


Betriu, N., Jarrosson-Moral, C., & Semino, C. E. (2020). Culture and differentiation of human hair follicle dermal papilla cells in a soft 3D self-assembling peptide scaffold. Biomolecules, 10(5), Article 684. doi:10.3390/biom10050684


Biernaskie, J., Paris, M., Morozova, O., Fagan, B. M., Marra, M., Pevny, L., & Miller, F. D. (2009). SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell, 5(6), 610-623. doi:10.1016/j.stem.2009.10.019


Chi, W., Wu, E., & Morgan, B. A. (2013). Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development, 140(8), 1676-1683. doi:10.1242/dev.090662


Darby, I. A., & Hewitson, T. D. (2007). Fibroblast differentiation in wound healing and fibrosis. International Review of Cytology, 257, 143-179. doi:10.1016/S0074-7696(07)57004-X


Driskell, R. R., Clavel, C., Rendl, M., & Watt, F. M. (2011). Hair follicle dermal papilla cells at a glance. Journal of Cell Science, 124(Pt 8), 1179-1182. doi:10.1242/jcs.082446


Gabbiani, G. (2003). The myofibroblast in wound healing and fibrocontractive diseases. The Journal of Pathology, 200(4), 500-503. doi:10.1002/path.1427


Gan, Y., Wang, H., Du, L., Li, K., Qu, Q., Liu, W., … Miao, Y. (2022). Cellular heterogeneity facilitates the functional differences between hair follicle dermal sheath cells and dermal papilla cells: A new classification system for mesenchymal cells within the Hair Follicle Niche. Stem Cell Reviews and Reports, 18(6), 2016-2027. doi:10.1007/s12015-022-10411-2


Gentile, P., & Garcovich, S. (2019). Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth-factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development. Cells, 8(5), Article 466. doi:10.3390/cells8050466


Goodpaster, T., Legesse-Miller, A., Hameed, M. R., Aisner, S. C., Randolph-Habecker, J., & Coller, H. A. (2008). An immunohistochemical method for identifying fibroblasts in formalin-fixed, paraffin-embedded tissue. Journal of Histochemistry & Cytochemistry, 56(4), 347-358. doi:10.1369/jhc.7A7287.2007


Ito, Y., Hamazaki, T. S., Ohnuma, K., Tamaki, K., Asashima, M., & Okochi, H. (2007). Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. Journal of Investigative Dermatology, 127(5), 1052-1060. doi:10.1038/sj.jid.5700665


Jahoda, C. A., Horne, K. A., & Oliver, R. F. (1984). Induction of hair growth by implantation of cultured dermal papilla cells. Nature, 311(5986), 560-562. doi:10.1038/311560a0


Jahoda, C. A., Reynolds, A. J., Chaponnier, C., Forester, J. C., & Gabbiani, G. (1991). Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. Journal of Cell Science, 99(Pt 3), 627-636. doi:10.1242/jcs.99.3.627


Jo, S. J., Kim, J. Y., Jang, S., Choi, S. J., Kim, K. H., & Kwon, O. (2016). Decrease of versican levels in the follicular dermal papilla is a remarkable aging-associated change of human hair follicles. Journal of Dermatological Science, 84(3), 354-357. doi:10.1016/j.jdermsci.2016.09.014


Kim, S. R., Cha, S. Y., Kim, M. K., Kim, J. C., & Sung, Y. K. (2006). Induction of versican by ascorbic acid 2-phosphate in dermal papilla cells. Journal of Dermatological Science, 43(1), 60-62. doi:10.1016/j.jdermsci.2006.02.010


Kisiel, M. A., & Klar, A. S. (2019). Isolation and culture of human dermal fibroblasts. Methods in Molecular Biology, 1993, 71-78. doi:10.1007/978-1-4939-9473-1_6


Kloepper, J. E., Sugawara, K., Al-Nuaimi, Y., Gaspar, E., van Beek, N., & Paus, R. (2010). Methods in hair research: How to objectively distinguish between anagen and catagen in human hair follicle organ culture. Experimental Dermatology, 19(3), 305-312. doi:10.1111/j.1600-0625.2009.00939.x


Kwack, M. H., Jang, Y. J., Won, G. H., Kim, M. K., Kim, J. C., & Sung, Y. K. (2019). Overexpression of alkaline phosphatase improves the hair-inductive capacity of cultured human dermal papilla spheres. Journal of Dermatological Science, 95(3), 126-129. doi:10.1016/j.jdermsci.2019.07.008


Legue, E., & Nicolas, J. F. (2005). Hair follicle renewal: Organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development, 132(18), 4143-4154. doi:10.1242/dev.01975


Lichti, U., Weinberg, W. C., Goodman, L., Ledbetter, S., Dooley, T., Morgan, D., & Yuspa, S. H. (1993). In vivo regulation of murine hair growth: Insights from grafting defined cell populations onto nude mice. Journal of Investigative Dermatology, 101(1 Suppl), 124S-129S. doi:10.1111/1523-1747.ep12363165


Mali, N. M., Kim, Y.-H., Park, J. M., Kim, D., Heo, W., Dao, B. L., … Oh, J. W. (2018). Characterization of human dermal papilla cells in alginate spheres. Applied Sciences, 8(10), Article 1993.  


Nilforoushzadeh, M. A., Aghdami, N., & Taghiabadi, E. (2020). Human hair outer root sheath cells and platelet-lysis exosomes promote hair inductivity of dermal papilla cell. Tissue Engineering and Regenerative Medicine, 17(4), 525-536. doi:10.1007/s13770-020-00266-4


Ohyama, M., Kobayashi, T., Sasaki, T., Shimizu, A., & Amagai, M. (2012). Restoration of the intrinsic properties of human dermal papilla in vitro. Journal of Cell Science, 125(Pt 17), 4114-4125. doi:10.1242/jcs.105700


Rendl, M., Polak, L., & Fuchs, E. (2008). BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes & Development, 22(4), 543-557. doi:10.1101/gad.1614408


Rittie, L., & Fisher, G. J. (2005). Isolation and culture of skin fibroblasts. Methods in Molecular Medicine, 117, 83-98. doi:10.1385/1-59259-940-0:083


Soma, T., Tajima, M., & Kishimoto, J. (2005). Hair cycle-specific expression of versican in human hair follicles. Journal of Dermatological Science, 39(3), 147-154. doi:10.1016/j.jdermsci.2005.03.010


Taghiabadi, E., Nilforoushzadeh, M. A., & Aghdami, N. (2020). Maintaining hair inductivity in human dermal papilla cells: A review of effective methods. Skin Pharmacol Physiol, 33(5), 280-292. doi:10.1159/000510152


Topouzi, H., Logan, N. J., Williams, G., & Higgins, C. A. (2017). Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Experimental Dermatology, 26(6), 491-496. doi:10.1111/exd.13368


Yang, Y., Li, Y., Wang, Y., Wu, J., Yang, G., Yang, T., … Lu, Y. (2012). Versican gene: Regulation by the beta-catenin signaling pathway plays a significant role in dermal papilla cell aggregative growth. Journal of Dermatological Science, 68(3), 157-163. doi:10.1016/j.jdermsci.2012.09.011



Creative Commons License
© The Author(s) 2023. This is an open access publication under CC BY NC licence.