--

15(2)2025 (IN PRESS)

Research on pennywort (Centella asiatica L.) powder formulation by foam-mat drying


Author - Affiliation:
Hien Thi Minh Ly - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Corresponding author: Hien Thi Minh Ly - hien.ltminh@ou.edu.vn
Submitted: 18-03-2025
Accepted: 02-05-2025
Published: 06-05-2025

Abstract
Pennywort (Centella asiatica L.) leaf extract is commonly consumed as a beverage in Vietnam. Additionally, pennywort is recognized as a medicinal herb with various bioactive properties, including anti-inflammatory, wound-healing, and neuroprotective effects. In this study, factors composed of mass percentages of ingredients (egg white as foaming agent and maltodextrin as drying carrier) and drying temperature were investigated to obtain good pennywort powder quality by foam-mat drying. Optimal powder quality was achieved with 15% w/w egg white, 20% w/w maltodextrin, and the drying temperature of 80°C. The powder color measured by Colorimeter gained L*, a* and b* of 42.00, -5.01, and 19.96, respectively. In addition, sensory points by panelists were determined in the range of 4.4 to 5.8 with a nine-point Hedonic scale. For the drying kinetic study, pennywort powder foam-mat drying was closely fitted to the Page model at both 80 and 90oC drying temperatures with determination coefficients above 0.9900.

Keywords
Centella asiatica L.; drying kinetic; foam-mat drying; pennywort; sensory quality

Full Text:
PDF

References

Ahmed, A.S., Taher, M., Mandal, U.K., Jaffri, J.M., Susanti, D., Mahmood, S. and Zakaria, Z.A. (2019). Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complementary and Alternative Medicine, 19, 213. doi:10.1186/s12906-019-2625-2


AOAC. (1980). Official method of analysis (13th ed.), 22.013, Moisture in dried fruit, Official Final Action


Belal, M., Hossain, M.A., Mitra, S., Zzaman, W. (2023). Effect of foaming agent concentration and foam stabilizer on the foaming capacity and physical properties of tomato powder at dried at different temperature. Journal of Microbiology, Biotechnology and Food Sciences, 12(4). doi:10.55251/jmbfs.4741.


Borhan, M.Z., Ahmad, R., Rusop, M., and Abdullah, S. (2013). Optimization of ball milling parameters to produce Centella asiatica herbal nanopowders. Journal of nanostructure in chemistry, 3, 79. doi:10.1186/2193-8865-3-79


Brar, A.S., Kaur, P., Kaur, G., Subramanian, J., Kumar, D., Singh, A. (2020). Optimization of Process Parameters for Foam-Mat Drying of Peaches. International Journal of Fruit Science, 20:sup3, S1495-S1518. doi:10.1080/15538362.2020.1812017


Buranasudja, V., Rani, D., Malla, A., Kobtrakul, K., & Vimolmangkang, S. (2021). Insights into antioxidant activities and anti skin aging potential of callus extract from Centella asiatica (L.). Scientific Reports, 11, 13459. doi:10.1038/s41598-021-92958-7


Deng, L.Z., Mujumdar, A.S., Zhang, Q., Yang, X.H., Wang, J., Zheng, Z.A., Gao, Z.J., Xiao, H.X. (2017). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – a comprehensive review. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2017.1409192


Djaeni, M., Prasetyaningrum, A., Sasongko, S.B., Widayat, W., Hii, C.L. (2015). Application of foam-mat drying with egg white for carrageenan: drying rate and product quality aspects. Journal of Food Science Technology, 52(2), 1170–1175. doi:10.1007/s13197-013-1081-0


El-Salam, E.A.E.A., Ali, A.M., & Hammad, K.S. (2021). Foaming process optimization, drying kinetics and quality of foam mat dried papaya pulp. Journal of Food Science Technology, 58(4), 1449–1461. doi:10.1007/s13197-020-04657-2


Falade, K.O., Adeyanju, K.I., Uzo-Peters, P.I. (2003). Foam-mat drying of cowpea (Vigna unguiculata) using glyceryl monostearate and egg albumin as foaming agents. European Food Research and Technology, 217, 486–491. doi:10.1007/s00217-003-0775-3


Hardy, Z. & Jideani, V.A. (2015). Foam-mat Drying Technology: A Review. Critical Reviews in Food Science and Nutrition, 57(12), 2560-2572. doi:10.1080/10408398.2015.1020359


Henry, J. (2015). Advances in food and nutrition research, Volume 76. Elsevier Inc. UK


Hossain, M.A., Mitra, S., Belal, M., Zzaman, W. (2021). Effect of foaming agent concentration and drying temperature on biochemical properties of foam mat dried tomato powder. Food Research, 5(1), 291 – 297. doi:10.26656/fr.2017.5(1).372


Kamali, R., Dadashi, S., Dehghannya, J., Ghaffari, H. (2022). Numerical simulation and experimental investigation of foam-mat drying for producing banana powder as influenced by foam thickness. Applied Food Research, 2, 100075. doi:10.1016/j.afres.2022.100075


Kandasamy, Varadharaju, N., Kalemullah, S., Maladhi, D. (2014). Optimization of process parameters for foam-mat drying of papaya pulp Palani. Journal of Food Science Technology, 51(10), 2526–2534. doi:10.1007/s13197-012-0812-y


Kaur, N., Aggarwal, P., Rajput, H. (2018). Effect of Different Blanching Treatments on Physicochemical, Phytochemical Constituents of Cabinet Dried Broccoli. Chemical Science Review and Letters, 7(25), 262-271, Article CS212049011.


Kirandeep, & Alam, M.S. (2016). Effect of Blanching and Drying Methods on Quality of Sweet Lemon (Citrus Limetta Risso) Pomace Powder. Agricultural Research Journal, 53(1), 90-96. doi:10.5958/2395-146X.2016.00016.8


Krasaekoopt, W., and Bhatia, S. (2012). Production of Yogurt Powder Using Foam-Mat Drying. AU Journal of Technology, 15(3), 166-171


Kumar, A., Kandasamy, P., Chakraborty, I. (2022). Analysis of Foaming Properties of Mango Pulp for Foam mat Drying: Impact of Egg Albumin Concentration and Whipping Time. Journal of The Institution of Engineers (India): Series A, 103(3), 717–724. doi:10.1007/s40030-022-00661-1


Orhan, I.E. (2012). Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential. Evidence-Based Complementary and Alternative Medicine, Article ID 946259. doi:10.1155/2012/946259


Pin, K.Y., Chuah, T.G., Abdull Rashih, A., Law, C. L., Rasadah, M.A., Choong, T.S.Y. (2009). Drying of Betel Leaves (Piper betle L.): Quality and Drying Kinetics. Drying Technology, 27(1), 149 — 155. doi:10.1080/07373930802566077


Razali, S.A., Nor M.Z.M., Anuar, M.S., Rosnah Shamsudin, R., Mohamad W.A.F.W. (). Banana Powder Production via Foam Mat Drying. Advances in Agricultural and Food Research Journal, 1(2), a0000142. doi:10.36877/aafrj.a0000142


Roy, T., Alam, M.S., Gupta, R. (2024). Optimization of foaming process for development of modified aloe polysaccharide (MAP) juice and powder using foam mat drying. Food Science and Biotechnology, 33, 417–429. doi:10.1007/s10068-023-01354-6


Singh, S., Kawade, S., Dhar, A., Powar, S. () Analysis of mango drying methods and effect of blanching process based on energy consumption, drying time using multi-criteria decision-making. Cleaner Engineering and Technology, 8, 100500. doi:10.1016/j.clet.2022.100500


Sunil, Varun, Sharma, N. (2013). Modelling the drying kinetics of green peas in a solar dryer and under open sun. International Journal of Energy and Environment, 4(4), 663-676


Syah, H. & Mustaqimah (2024). Mathematical Modelling on The Thin-Layer Drying of Centella Asiatica Leaves. IOP Conf. Series: Earth and Environmental Science, 1290, 012022. doi:10.1088/1755-315/1290/1/012022


Tai, N.V., Hao, H.V., Han, T.T.N., Giau, T.N., Thuy, N.M., Thanh, N.V. (2024). Effect of foaming conditions and drying temperatures on total polyphenol content and drying rate of foam-mat dried banana powder: Modeling and optimization study. Journal of Agriculture and Food Research, 18, 101352. doi:10.1016/j.jafr.2024.101352


Teerapattanakaird, M., Vipan-Ngern, N., HLandmaung, M., Shoji, K., Thongkong, S., Phongthai, S. (2023). Process optimization for foam-mat drying and physicochemical properties of keafy vegetable powder. Food and Applied Bioscience Journal, 11(3), 26-40


Tran, T.Y.N, Le, D.T., Nguyen, N.L, Phan, D.A., Nguyen, T.N.A., Tran, T.T, Dao, T.P. (2022). Effects of Blanching and Drying Condition on the Quality of Small Shrimp (Acetes). Journal of Food Quality, Article ID 3996787. doi:10.1155/2022/3996787


Vega-Galvez, A., Uribe, E., Gómez-Pérez, L.S., Garcia, V., Mejias, N., Pasten, A. (2022). Drying Kinetic Modeling and Assessment of Mineral Content, Antimicrobial Activity, and Potential α Glucosidase Activity Inhibition of a Green Seaweed (Ulva spp.) Subjected to Different Drying Methods, ACS Omega, 7, 34230−34238. doi:10.1021/acsomega.2c03617


Wang, H., Liu, Z.L., Vidyarthi, S.K., Wang, Q.H., Gao, L., Li, B.R., Wei, Q., Liu, Y.H., Xiao, H.W. (2020). Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes. Drying Technology. doi:10.1080/07373937.2020.1818254


Wahyuni, R., Wignyanto, W., Wijana, Sucipto, S. (2021). Optimization of foam mat drying process of moringa leaf powder (Moringa oleifera) as protein and amino acids sources. Food Research, 5(2), 418 – 426. doi:10.26656/fr.2017.5(2).539


Watharkar, R.B., Chakraborty, S., Srivastav, P.P, Srivastava, B. (). Foaming and foam mat drying characteristics of ripe banana [Musa balbisiana (BB)] pulp. Journal of Food Process Engineering, 44(8), e13726. doi:10.1111/jfpe.13726


Workneh, T.S., Zinash, A., Woldetsadik, K. (2014). Blanching, salting and sun drying of different pumpkin fruit slices. Journal of Food Science Technology, 51(11), 3114–3123. doi:10.1007/s13197-012-0835-4


Xiao, H.W., Pan, Z.L., Deng, L.Z., El-Mashad, H.M., Yang, X.H., Mujumdar, A.S., Gao, Z.J., Zhang, Q. (). Recent developments and trends in thermal blanching-a comprehensive review. Information Processing in Agriculture. doi:10.1016/j.inpa.2017.02.001


Zhao, C.C., Ameer, K., Eun, J.B. (2021). Effects of various drying conditions and methods on drying kinetics and retention of bioactive compounds in sliced persimmon. LWT - Food Science and Technology, 143, 111149. doi:10.1016/j.lwt.2021.111149



Creative Commons License
© The Author(s) 2025. This is an open access publication under CC BY NC licence.