--

15(2)2025 (IN PRESS)

Bioinspired synthesis of Ag/AgCl nanoparticles from Aganonerion Polymorphum leaves: boosted antibacterial potential


Author - Affiliation:
Thanh Gia Thien Ho - Vietnam Academy of Science and Technology, Ho Chi Minh City , Vietnam
Minh Van Nguyen - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Linh Nhat Duong - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Long Ba Do - Vietnam Academy of Science and Technology, Ho Chi Minh , Vietnam
Anh Phung Nguyen - Vietnam Academy of Science and Technology, Ho Chi Minh , Vietnam
Tri Nguyen - Vietnam Academy of Science and Technology, Ho Chi Minh , Vietnam
Corresponding author: Tri Nguyen - ntri@ict.vast.vn
Submitted: 18-03-2025
Accepted: 02-05-2025
Published: 06-05-2025

Abstract
The use of plant-extracts (mainly polyphenols) as both reducing and stabilizing agents has opened up new scopes in AgNPs biosynthesis. A lack of comprehensive studies on possibility of the Aganonerion polymorphum (AP) leaves extract prompts an update synthesis of Ag/AgCl nanoparticles thanks to a rich source of chlorine of the AP leaves extract, in order to illumine the positive effect of AgCl in antibacterial systems. Ag/AgCl nanoparticles were efficiently synthesized using AP leaf extract, serving as both a natural reducing and stabilizing agent. In fact, the highest concentrations of polyphenols (2.55 mg/g) and ascorbic acid (2.89 µg/mL) were extracted under optimal conditions (at 70 °C for 1.5 hours), acting as the phytochemicals for metal ion reduction to form Ag/AgCl nanoparticles under sunlight, observed by absorbance bands at the wavelength of 400500 nm. XRD showed a highly crystalline face-centered cubic structure of Ag and AgCl, and EDX indicated the presence of Ag and Cl. TEM revealed spheres with nano-size of 1520 nm. The zeta potential confirmed the long-term stability of the Ag/AgCl in aqueous solution (8.7 mV). As-prepared Ag/AgCl demonstrated an excellent antibacterial ability against five bacterial via their inhibition zone (average diameter >9.3 mm), and minimum inhibitory concentration (MIC, 16.6 μg/mL). This study proposes a green and sustainable strategy for synthesizing Ag/AgCl nanoparticles, employing AP leaf extract as a natural reducing and stabilizing agent under ambient temperature conditions. The synthesized Ag/AgCl nanoparticles exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria. Notably, the presence of AgCl further enhanced their efficacy, expanding their potential for advanced antibacterial applications.

Keywords
Aganonerion polymorphum; ascorbic acid; antibacterial; polyphenols; silver nanoparticles

Full Text:
PDF

References

Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mosallam, F. M., Nasser, H. A., . . . El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B: Biointerfaces, 180, 411-428.


Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., . . . Salman, S. M. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomedicine, 14, 5087.


Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 9(1), 1-7.


Anh, N. P., Linh, D. N., Minh, N. V., & Tri, N. (2019). Positive effects of the ultrasound on biosynthesis, characteristics and antibacterial activity of silver nanoparticles using Fortunella Japonica. Mater. Trans., 60(9), 2053-2058. doi:10.2320/matertrans.M2019065


Anh, N. P., Mi, T. T. A., Linh, D. H. T., Van, N. T. T., Cuong, H. T., Van Minh, N., & Tri, N. (2018). Fortunella japonica extract as a reducing agent for green synthesis of silver nanoparticles. Int. J. Eng. Technol., 7(3), 1570-1575.


Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem., 4(1), 1-6.


Dibrov, P., Dzioba, J., Gosink, K. K., & Häse, C. C. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother., 46(8), 2668-2670.


Essien, E. E. (2011). Effect of extraction conditions on total polyphenol contents, antioxidant and antimicrobial activities of Cannabis sativa L. Elec. J. Env. Agricult. Food Chem., 11(04), 300-307.


Handoko, C. T., Huda, A., & Gulo, F. (2019). Synthesis pathway and powerful antimicrobial properties of silver nanoparticle: a critical review. Asian J. Sci. Res., 12(1).


Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nat. Nanotechnol., 6(9), 534-534.


Ibrahim, H. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 8(3), 265-275.


Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett., 19(1), 355-374.


Jalilian, F., Chahardoli, A., Sadrjavadi, K., Fattahi, A., & Shokoohinia, Y. (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol., 31(3), 1323-1332.


Kashyap, M., Samadhiya, K., Ghosh, A., Anand, V., Shirage, P. M., & Bala, K. (2019). Screening of microalgae for biosynthesis and optimization of Ag/AgCl nano hybrids having antibacterial effect. RSC Adv., 9(44), 25583-25591.


Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 79(3), 594-598.


Kim, J., Pitts, B., Stewart, P. S., Camper, A., & Yoon, J. (2008). Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob. Agents Chemother., 52(4), 1446-1453.


Kouhbanani, M. A. J., Beheshtkhoo, N., Nasirmoghadas, P., Yazdanpanah, S., Zomorodianc, K., Taghizadeh, S., & Amani, A. M. (2019). Green synthesis of spherical silver nanoparticles using Ducrosia anethifolia aqueous extract and its antibacterial activity. J. Environ. Treat. Tech., 7(3), 461-466.


Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano today, 10(3), 339-354.


Li, H., Huang, W., Wang, G.-L., Wang, W.-L., Cui, X., & Zhuang, J. (2017). Transcriptomic analysis of the biosynthesis, recycling, and distribution of ascorbic acid during leaf development in tea plant (Camellia sinensis (L.) O. Kuntze). Sci. Rep., 7(1), 1-11.


Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J. Saudi Chem. Soc., 19(3), 311-317.


Moosa, A. A., Ridha, A. M., & Al-Kaser, M. (2015). Process parameters for green synthesis of silver nanoparticles using leaves extract of aloe vera plant. Int. J. Multidiscip. Curr. Res., 3.


Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. J. Chromatogr. A, 1054(1-2), 95-111.


Palei, N. N. (2020). Green synthesis of silver nanoparticles using leaf extract of Lantana camara and its antimicrobial activity. Int. J. Green Pharm., 14(02).


Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139(19), 4855-4861.


Patil, M. P., Palma, J., Simeon, N. C., Jin, X., Liu, X., Ngabire, D., . . . Kim, G.-D. (2017). Sasa borealis leaf extract-mediated green synthesis of silver–silver chloride nanoparticles and their antibacterial and anticancer activities. New J. Chem., 41(3), 1363-1371.


Patil, M. P., Seo, Y. B., & Kim, G.-D. (2018). Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa. Microb. Pathog., 116, 84-90.


Paulkumar, K., Gnanajobitha, G., Vanaja, M., Pavunraj, M., & Annadurai, G. (2017). Green synthesis of silver nanoparticle and silver based chitosan bionanocomposite using stem extract of Saccharum officinarum and assessment of its antibacterial activity. Adv. Nat. Sci.: Nanosci. Nanotechnol., 8(3), 035019.


Rastogi, L., & Arunachalam, J. (2013). Green synthesis route for the size controlled synthesis of biocompatible gold nanoparticles using aqueous extract of garlic (Allium sativum). Adv. Mater. Lett, 4, 548-555.


Silva, E., Souza, J., Rogez, H., Rees, J.-F., & Larondelle, Y. (2007). Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem., 101(3), 1012-1018.


Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 299, 152-178.


Sulaiman, I. S. C., Basri, M., Masoumi, H. R. F., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem. Cent. J., 11(1), 1-11.


Tanase, C., Coșarcă, S., & Muntean, D.-L. (2019). A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, 24(6), 1182.


Thangudu, S., Kulkarni, S. S., Vankayala, R., Chiang, C.-S., & Hwang, K. C. (2020). Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plasmonic core–shell Ag@ AgCl nanocubes as an external nanomedicine. Nanoscale, 12(24), 12970-12984.


Turkmen, N., Velioglu, Y. S., Sari, F., & Polat, G. (2007). Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules, 12(3), 484-496.


Van Hien, P., Vu, N. S. H., Bach, L. X., Tran, N. Q., Dao, V. A., Trinh, Q. T., & Nam, N. D. (2019). Capability of Aganonerion polymorphum leaf-water extract in protecting hydrochloric acid induced steel corrosion. New J. Chem., 43(39), 15646-15658.


Villanueva-Ibáñez, M., Yañez-Cruz, M., Álvarez-García, R., Hernández-Pérez, M., & Flores-González, M. (2015). Aqueous corn husk extract–mediated green synthesis of AgCl and Ag nanoparticles. Mater. Lett., 152, 166-169.


Vuong, Q. V., Hirun, S., Roach, P. D., Bowyer, M. C., Phillips, P. A., & Scarlett, C. J. (2013). Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med., 3(3), 104-111.


Winter, J., Ilbert, M., Graf, P., Özcelik, D., & Jakob, U. (2008). Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell, 135(4), 691-701.


Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., . . . Panahi, Y. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif. Cells Nanomed. Biotechnol., 46(sup3), S336-S343.


Zhang, L., Wu, L., Si, Y., & Shu, K. (2018). Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PloS one, 13(12), e0209020.


Zhang, W., & Jiang, W. (2020). Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol., 155, 1252-1261.



Creative Commons License
© The Author(s) 2025. This is an open access publication under CC BY NC licence.