--

2 (1) 2012

Computation of limit and shakedown using the NS-FEM and second-order cone programming


Author - Affiliation:
Tran Trung Dung - Ho Chi Minh City Open University , Vietnam
Le Van Canh - International University, VNU HCMC , Vietnam
Nguyen Xuan Hung - University of Science HCMC , Vietnam
Corresponding author: Nguyen Xuan Hung - kim.npt@ou.edu.vn

Abstract
This paper presents a novel numerical procedure for computation of limit and shakedown using node-based smoothed finite element method (NS-FEM) in combination with second-order cone programming (SOCP). The obtained discretization formulation is then cast in a form which involves second-order cone constraints, ensuring that the underlying optimization problem can be solved by highly efficient primal-dual interior point algorithm. Furthermore, in the NS-FEM, the system stiffness matrix is computed using the smoothed strains over the smoothing domains associated with nodes. This ensures that the size of the resulting optimization problem is kept to a minimum. The efficiency of the present approach is illustrated by examining several numerical examples.

Keywords
Limit and shakedown analysis (LSA); node-based smoothed finite element method (NS-FEM); second-order cone programming (SOCP)

Full Text:
PDF

References

M. A. Save, C. E. Massonet and G. De SAXCE: Plastic limit analysis of plates, shells and disks. Elsevier, Amsterdam (1997).


J. S. Chen, C. T. Wux, S. Yoon, and Y. You. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 50:435-466 (2001).


Liu, G.R., Nguyen-Thoi, T.: Smoothed Finite Element Methods. CRC Press, Taylor and Francis Group, NewYork (2010).


T. N. Tran, G. R. Liu, H. Nguyen-Xuan and T. Nguyen-Thoi (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. International Journal for Numerical Methods in Engineering, 82:917–938.


W.T. Koiter, General theorems for elastic plastic solids. In: Progress in Solid Mechanics (edited by Sneddon I. N. and Hill R.), pp. 165-221, Nord-Holland, Amsterdam, (1960).


D.K. Vu, Dual Limit and Shakedown analysis of structures. Dissertation, Universitéde Liège, Belgium (2001).


Gaydon FA, McCrum AW. A theoretical investigation of the yield point loading of a square plate with a central circular hole. Journal of the Mechanics and Physics of Solids 1954; 2:156–169.


Garcea G, Armentano G, Petrolo S, Casciaro R. Finite element shakedown analysis of two-dimensional structures. International Journal for Numerical Methods in Engineering; 63:1174–1202 (2005).


Heitzer M. Traglast- und Einspielanalyse zur Bewertung der Sicherheit passiver Komponenten. Berichte des Forschungszentrums Julich,Jul-3704, Dissertation, RWTH Aachen, Germany (1999).


Vu DK. Dual limit and shakedown analysis of structures. Dissertation, Universit´edeLiège, Belgium, (2001).


T. N. Tran, G.R. Liu, H. Nguyen-Xuan, and T. Nguyen-Thoi. An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. International Journal for. Numerical Methods in Engineering, 82:917–938, 2010.


T. N. Tran, Limit and shakedown analysis of plates and shells including uncertainties. Dissertation, Technische Universitat Chemnitz, Germany, (2008).


M. Vicente da Silva and A. N. Antao. A non-linear programming method approach for upper bound limit analysis. International Journal for Numerical Methods in Engineering, 72:1192-1218(2007).


C. V. Le, H. Nguyen-Xuan, H. Askes, S. Bordas, T. Rabczuk and H. NguyenVinh. A cell-based smoothed finite element method for kinematic limit analysis. International Journal for Numerical Methods in Engineering, 83:1651-1674 (2010).


N. Zouain, L. Borges, J. L. Silveira, An algorithm for shakedown analysis with nonlinear yield functions. Compute Methods Appl. Mech. Engrg. 191, 2463–2481(2002).


S. Chen, Y. Liu, and Z. Cen. (2008) Lower-bound limit analysis by using the EFG method and non-linear programming. International Journal for Numerical Methods in Engineering, 74:391-415.


J. Gross-Weege. On the numerical assessment of the safety factor of elastoplastic structures under variable loading. International Journal of Mechanical Sciences,39:417-433 (1997).


G. Zhang, Einspielen und dessen numerische Behandlung von Flachentragwerken aus ideal plastischem bzw. Kinematisch verfestingendemMaterial, Berich-nr. Institut für Mechanik, University Hannover, 1995.


F. Genna, A nonlinear inequality, finite element approach to the direct computation of shakedown load safety factors, Int. J. Mech. Sci. 30, 769–789 (1988).


Y. Liu, X.Z. Zhang, Z. Cen, Lower bound shakedown analysis by the symmetric Galerkin boundary element method. Int. J. Plasticity 21, 21–42 (2005).


L. Corradi, A. Zavelani, A linear programming approach to shakedown analysis of structures, Comput. Methods Appl. Mech. Engrg. 3, 37–53(1974).


V. Carvelli, Z.Z. Cen, Y. Liu, G. Maier, Shakedown analysis of defective pressure vessels by a kinematic approaches, Archive Appl. Mech. 69, 751–764(1999).


K. Krabbenhøft, A.V. Lyamin, S.W. Sloan, Bounds to shakedown loads for a class of deviatoric plasticity models, Comput. Mech. 39, 879–888(2007).




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.