--

15(1)2025

Extraction process optimization for maximizing total polyphenol content in cashew nut testa (Anacardium occidentale L.) extract


Author - Affiliation:
Dung Thi Nguyen - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Toan Van Nguyen - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Tu Le Kha Bui - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Lieu Thi Nguyen - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Son Hai Pham - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Trinh Thi Nu Nguyen - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Trang Thi Thuy Nguyen - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Thinh Bao Bui - Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City , Vietnam
Corresponding author: Thinh Bao Bui - buibaothinh9595@gmail.com
Submitted: 09-10-2024
Accepted: 19-11-2024
Published: 13-01-2025

Abstract
Cashew nut testa (Anacardium occidentale L.) is a valuable source of polyphenols known for their strong bioactivities. This study optimized the extraction conditions to obtain polyphenol-rich extracts from cashew nut testa. The effects of three key factors, extraction time, material-to-solvent ratio, and temperature, on Total Polyphenol Content (TPC, mg GAE/g extract) were investigated. Response surface methodology, using a Box-Behnken design, was applied to design the experiments and optimize the extraction process. The results showed that the relationship between TPC and extraction conditions followed a second-order model with an R² value of 0.9999. All three factors significantly influenced TPC (p < 0.05), and their interactions were also significant. The model predicted optimal conditions for maximum TPC at an extraction time of 19.85h, a temperature of 58.80°C, and a material-to-solvent ratio of 1:16.39 (w/v). Validation experiments under the optimized conditions of 20h, 59°C, and a 1:16 ratio confirmed the model's accuracy, yielding a TPC of 534.67mg GAE/g extract, statistically equivalent to the predicted value. These findings demonstrate the efficacy of the optimized conditions in maximizing polyphenol extraction from cashew nut testa.

Keywords
Anacardium occidentale; cashew nut testa; extraction conditions; polyphenol; response surface methodology

Full Text:
PDF

Cite this paper as:

Nguyen, D. T., Nguyen, T. V., Bui, T. L. K., Nguyen, L. T., Pham, S. H., Nguyen, T. T. N., Nguyen, T. T. T., & Bui, T. B. (2025). Extraction process optimization for maximizing total polyphenol content in cashew nut testa (Anacardium occidentale L.) extract. Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 15(1), 34-46. doi:10.46223/HCMCOUJS.tech.en.15.1.3786.2025


References

Abd-El-Aziz, N. M., Hifnawy, M. S., El-Ashmawy, A. A., Lotfy, R. A., & Younis, I. Y. (2022). Application of Box-Behnken design for optimization of phenolics extraction from Leontodon hispidulus in relation to its antioxidant, anti-inflammatory and cytotoxic activities. Scientific Reports, 12(1), Article 8829. https://doi.org/10.1038/s41598-022-12642-2


Adebooye, O. C., Alashi, A. M., & Aluko, R. E. (2018). A brief review on emerging trends in global polyphenol research. Journal of Food Biochemistry, 42(4), Article e12519. https://doi.org/10.1111/jfbc.12519


Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011


Antony, A., & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), Article 2107. https://doi.org/10.3390/app12042107


Aourabi, S., Sfaira, M., & Mahjoubi, F. (2020). Optimization of ultrasound‐assisted extraction of polyphenol content from Zea mays Hairs (Waste). The Scientific World Journal, 2020(1), Article 5072938. https://doi.org/10.1155/2020/5072938


Bindes, M. M. M., Cardoso, V. L., Reis, M. H. M., & Boffito, D. C. (2019). Maximisation of the polyphenols extraction yield from green tea leaves and sequential clarification. Journal of Food Engineering, 241, 97-104. https://doi.org/10.1016/j.jfoodeng.2018.08.006


Bouafia, M., Colak, N., Ayaz, F. A., Benarfa, A., Harrat, M., Gourine, N., & Yousfi, M. (2021). The optimization of ultrasonic-assisted extraction of Centaurea sp. antioxidative
phenolic compounds using response surface methodology. Journal of Applied Research
on Medicinal and Aromatic Plants
, 25, Article 100330. https://doi.org/10.1016/j.jarmap.2021.100330


Chandrasekara, N., & Shahidi, F. (2011). Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. Journal of Agricultural and Food Chemistry, 59(9), 5006-5014. https://doi.org/10.1021/jf2000772


Chuo, S. C., Nasir, H. M., Mohd-Setapar, S. H., Mohamed, S. F., Ahmad, A., Wani, W. A., Muddassir, M., & Alarifi, A. (2022). A glimpse into the extraction methods of active compounds from plants. Critical Reviews in Analytical Chemistry, 52(4), 667-696. https://doi.org/10.1080/10408347.2020.1820851


Da Silva, J., De Brito, E. S., & Ferreira, S. R. S. (2023). Biorefinery of cashew byproducts: Recovery of value-added compounds. Food and Bioprocess Technology, 16(5), 944-960. https://doi.org/10.1007/s11947-022-02916-y


Espinosa‐Muñoz, V., RoldáN‐cruz, C. A., Hernández‐Fuentes, A. D., Quintero‐Lira, A., Almaraz‐Buendía, I., & Campos‐Montiel, R. G. (2017). Ultrasonic‐assisted extraction of phenols, flavonoids, and biocompounds with inhibitory effect against Salmonella typhimurium and Staphylococcus aureus from Cactus Pear. Journal of Food Process Engineering, 40(2), Article e12358. https://doi.org/10.1111/jfpe.12358


Huynh, Y. K., Nguyen, T. T., Tran, Y. T., Thanh, M., Truong, T. T. T., Tran, L. H., Le, T. B., Huynh, C. V. Q., Le, N. H., & Tran, K. V. (2022). Study on the extraction process of polyphenols with antioxidant activity from leaves of Rhodomryrtus tomentosa in Phu Quoc. CTU Journal of Science, 58(2), 18-27. https://doi.org/10.22144/ctu.jvn.2022.116


Kamath, V., & Rajini, P. S. (2007). The efficacy of cashew nut (Anacardium occidentale L.) skin extract as a free radical scavenger. Food Chemistry, 103(2), 428-433. https://doi.org/10.1016/j.foodchem.2006.07.031


Karabegović, I. T., Stojičević, S. S., Veličković, D. T., Nikolić, N. Č., & Lazić, M. L. (2013). Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology, 120, 429-436. https://doi.org/10.1016/j.seppur.2013.10.021


Le, X. T., Vo, V. L. L., Tran, T. Q., Bach, G. L., Tran, T. T., & Pham, H. T. H. (2019). Extraction process of polyphenols from soybean (Glycine max L.) sprouts: Optimization and evaluation of antioxidant activity. Processes, 7(8), Article 489. https://doi.org/10.3390/pr7080489


Mac, H. X., Nguyen, M. T. T., Nguyen, C. T. M., Nguyen, T. T. P., Le, M. T., Le, M. N. T., & Tran, N. T. T. (2018). Optimisation of microwave-assisted extraction of phenolic compounds from cashew net coat. Journal of Science Technology & Food, 16(1), 106-116.


Madrau, M. A., Piscopo, A., Sanguinetti, A. M., Del Caro, A., Poiana, M., Romeo, F. V., & Piga, A. (2009). Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. European Food Research and Technology, 228(3), 441-448. https://doi.org/10.1007/s00217-008-0951-6


Martin-Garcia, B., Pimentel-Moral, S., Gómez-Caravaca, A. M., Arráez-Román, D., & Segura-Carretero, A. (2020). Box-Behnken experimental design for a green extraction method of phenolic compounds from olive leaves. Industrial Crops and Products, 154, Article 112741. https://doi.org/10.1016/j.indcrop.2020.112741


Ministry of Health. (2017). Vietnamese Pharmacopoeia V. Medical Publshing House.


Mohod, A., Jain, S., & Powar, A. G. (2011). Cashew nut processing: Sources of environmental pollution and standards. BIOINFO Environment and Pollution, 1(1), 5-11.


Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68-76. https://doi.org/10.1016/j.seppur.2016.01.043


Ngamkhae, N., Monthakantirat, O., Chulikhit, Y., Boonyarat, C., Khamphukdee, C., Maneenat, J., Kwankhao, P., Pitiporn, S., & Daodee, S. (2021). Optimized extraction method for Kleeb Bua Daeng formula with the aid of the experimental design. Journal of Chemistry, 2021(1), Article 1457729. https://doi.org/10.1155/2021/1457729


Nguyen, N. Q., Nguyen, M. T., Nguyen, V. T., Le, V. M., Trieu, L. H., Le, X. T., Khang, T. V., Giang, N. T. L., Thach, N. Q., & Hung, T. T. (2020). The effects of different extraction conditions on the polyphenol, flavonoids components and antioxidant activity of Polyscias fruticosa roots. IOP Conference Series: Materials Science and Engineering, 736(2), Article 022067. https://doi.org/10.1088/1757-899X/736/2/022067


Oliveira, N. F., Leal, R. S., & Dantas, T. N. C. (2015). The importance of the cashew nut (Anacardium occidentale L.) coat: A review. American International Journal of Contemporary Scientific Research, 2(4), 09-41.


Oreopoulou, A., Tsimogiannis, D., & Oreopoulou, V. (2019). Extraction of polyphenols from aromatic and medicinal plants: An overview of the methods and the effect of extraction parameters. In R. R. Watson (Ed.), Polyphenols in plants (pp. 243-259). Academic Press. https://doi.org/10.1016/B978-0-12-813768-0.00025-6


Patra, J. K., Das, G., Lee, S., Kang, S. S., & Shin, H. S. (2018). Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends in Food Science & Technology, 82, 89-109. https://doi.org/10.1016/j.tifs.2018.10.001


Phuong, N. T., & Huan, P. T. (2024). Enzyme ‑ assisted extraction of cashew nut (Anacardium occidentale L.) testa. Food Research, 8(5), 237-244. https://doi.org/10.26656/fr.2017.8(5).020


Rathod, N. B., Elabed, N., Punia, S., Ozogul, F., Kim, S. K., & Rocha, J. M. (2023). Recent developments in polyphenol applications on human health: A review with current knowledge. Plants, 12(6), Article 1217. https://doi.org/10.3390/plants12061217


Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1-10. https://doi.org/10.4314/ajtcam.v8i1.60483


Sharma, P., Gaur, V. K., Sirohi, R., Larroche, C., Kim, S. H., & Pandey, A. (2020). Valorization of cashew nut processing residues for industrial applications. Industrial Crops and Products, 152, Article 112550. https://doi.org/10.1016/j.indcrop.2020.112550


Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D. V. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: A review. Environmental Chemistry Letters, 19(4), 3409-3443. https://doi.org/10.1007/s10311-021-01217-8


Sruthi, P., & Naidu, M. M. (2023). Cashew nut (Anacardium occidentale L.) testa as a potential source of bioactive compounds: A review on its functional properties and valorization. Food Chemistry Advances, 3, Article 100390. https://doi.org/10.1016/j.focha.2023.100390


Sruthi, P., Roopavathi, C., & Naidu, M. M. (2023). Profiling of phenolics in cashew nut (Anacardium occidentale L.) testa and evaluation of their antioxidant and antimicrobial properties. Food Bioscience, 51, Article 102246. https://doi.org/10.1016/j.fbio.2022.102246


Tirado-Kulieva, V. A., Sánchez-Chero, M., Yarlequé, M. V., Aguilar, G. F. V., Carrión-Barco, G., & Santa Cruz, A. G. Y. (2021). An overview on the use of response surface methodology to model and optimize extraction processes in the food industry. Current Research in Nutrition and Food Science Journal, 9(3), 745-754. https://doi.org/10.12944/CRNFSJ.9.3.03


Vuong, Q. V., Hirun, S., Roach, P. D., Bowyer, M. C., Phillips, P. A., & Scarlett, C. J. (2013). Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. Journal of Herbal Medicine, 3(3), 104-111. https://doi.org/10.1016/j.hermed.2013.04.004


Weremfo, A., Abassah‐Oppong, S., Adulley, F., Dabie, K., & Seidu‐Larry, S. (2023). Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. Journal of the Science of Food and Agriculture, 103(1), 26-36. https://doi.org/10.1002/jsfa.12121


Zafeer, M. K., & Bhat, K. S. (2023). Valorisation of agro-waste cashew nut husk (Testa) for different value-added products. Sustainable Chemistry for Climate Action, 2, Article 100014. https://doi.org/10.1016/j.scca.2023.100014



Creative Commons License
© The Author(s) 2025. This is an open access publication under CC BY NC licence.