--

15(1)2025

Kinship verification via ear images: A comparative study


Author - Affiliation:
Phuong Quang Luu - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Bay Van Nguyen - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Huy Quoc Nguyen - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Corresponding author: Huy Quoc Nguyen - huy.nq@ou.edu.vn
Submitted: 23-08-2024
Accepted: 27-09-2024
Published: 13-01-2025

Abstract
Kinship verification is crucial in daily life, especially in the legal field. Nowadays, most kinship verification methods utilize the advantages of human DNA and facial features. However, these methods require a lot of complex procedures, so they are unsuitable for real-time application. Therefore, researchers started to propose other promising biometrics, and the human ear is one of the most potential. The human ear has long been recognized as a robust biometric trait, comparable to others, such as face, iris, and fingerprint. This paper proposes using ear images to identify human kinship based on several well-known deep-learning networks. Moreover, an ear image set is presented to tackle the lack of a kinship-annotated dataset.

Keywords
deep learning; ear biometric; kinship verification

Full Text:
PDF

Cite this paper as:

Luu, P. Q., Nguyen, B. V., & Nguyen, H. Q. (2025). Kinship verification via ear images: A comparative study. Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 15(1), 47-57. doi:10.46223/HCMCOUJS.tech.en.15.1.3683.2025


References

Alshazly, H., Linse, C., Barth, E., & Martinetz, T. (2020). Deep convolutional neural networks for unconstrained ear recognition. IEEE Access, 8, 170295-170310. https://doi.org/10.1109/access.2020.3024116


Bessaoudi, M., Chouchane, A., Ouamane, A., & Boutellaa, E. (2020). Multilinear subspace learning using handcrafted and deep features for face kinship verification in the wild. Applied Intelligence, 51(6), 3534-3547. https://doi.org/10.1007/s10489-020-02044-0


Chergui, A., Ouchtati, S., Mavromatis, S., Bekhouche, S. E., Sequeira, J., & Dornaika, F. (2020). Kinship verification through facial images using multiscale and multilevel handcrafted features. Journal of Electronic Imaging, 29(2), 023017-023017. https://doi.org/10.1117/1.jei.29.2.023017


Chergui, A., Ouchtati, S., Sequeira, J., Bekhouche, S. E., & Bougourzi, F. (2018). Kinship verification using BSIF and LBP. In 2018 International Conference on Signal, Image, Vision and their Applications (SIVA) (pp. 1-5). IEEE. https://doi.org/10.1109/siva.2018.8661085


Dahan, E., & Keller, Y. (2020). A unified approach to kinship verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(8), 2851-2857. https://doi.org/10.1109/tpami.2020.3036993


Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. https://doi.org/10.48550/arxiv.2010.11929


Dvorsak, G., Dwivedi, A., Struc, V., Peer, P., & Emersic, Z. (2022). Kinship verification from ear images: An explorative study with deep learning models. In 2022 International Workshop on Biometrics and Forensics (IWBF) (pp. 1-6). IEEE. https://doi.org/10.1109/iwbf55382.2022.9794555


Emeršič, Ž., Križaj, J., Štruc, V., & Peer, P. (2018). Deep ear recognition pipeline. In
Studies in computational intelligence (Vol. 804, pp. 333-362). Springer. https://doi.org/10.1007/978-3-030-03000-1_14


Emeršič, Ž., Štruc, V., & Peer, P. (2017). Ear recognition: More than a survey. Neurocomputing, 255, 26-39. https://doi.org/10.1016/j.neucom.2016.08.139


Guo, G., & Wang, X. (2012). Kinship measurement on salient facial features. IEEE
Transactions on Instrumentation and Measurement
, 61(8), 2322-2325. https://doi.org/10.1109/tim.2012.2187468


Hassaballah, M., Alshazly, H. A., & Ali, A. A. (2018). Ear recognition using local binary patterns: A comparative experimental study. Expert Systems with Applications, 118,
182-200. https://doi.org/10.1016/j.eswa.2018.10.007


He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770-778). IEEE. https://doi.org/10.1109/cvpr.2016.90


Hoang, V. T. (2019). EarVN1.0: A new large-scale ear images dataset in the wild. Data in Brief, 27, Article 104630. https://doi.org/10.1016/j.dib.2019.104630


Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4700-4708). IEEE. https://doi.org/10.1109/cvpr.2017.243


Jain, A., Bolle, R., & Pankanti, S. (2006). Introduction to biometrics. In Springer eBooks (pp. 1-41). https://doi.org/10.1007/0-306-47044-6_1


Li, D., & Jiang, X. (2023). Kinship verification method of face image deep feature fusion. Academic Journal of Science and Technology, 5(1), 57-62. https://doi.org/10.54097/ajst.v5i1.5348


Li, L., Zhong, B., Hutmacher, C., Liang, Y., Horrey, W. J., & Xu, X. (2020). Detection of driver manual distraction via image-based hand and ear recognition. Accident Analysis & Prevention, 137, Article 105432. https://doi.org/10.1016/j.aap.2020.105432


Ma, Y., Huang, Z., Wang, X., & Huang, K. (2020). An overview of multimodal biometrics using the face and ear. Mathematical Problems in Engineering, 2020, 1-17. https://doi.org/10.1155/2020/6802905


Manuel, Z. (1963). U.S. Patent No. 3,102,459. U.S. Patent and Trademark Office.


Mzoughi, M. C., Aoun, N. B., & Naouali, S. (2024). A review on kinship verification from facial information. The Visual Computer, 1-21. https://doi.org/10.1007/s00371-024-03493-1


Nandy, A., & Mondal, S. S. (2019). Kinship verification using deep siamese convolutional neural network. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5). IEEE. https://doi.org/10.1109/fg.2019.8756528


Nguyen, H. Q., & Hoang, V. T. (2020). Gender recognition based on ear images:
A comparative experimental study. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 38, 451-456. https://doi.org/10.1109/isriti51436.2020.9315366


Nguyen, H. Q., & Hoang, V. T. (2021a). Real‐time human ear detection based on the joint of Yolo and RetinaFace. Complexity, 2021(1). https://doi.org/10.1155/2021/7918165


Nguyen, H. Q., & Hoang, V. T. (2021b). Human ear-side detection based on YOLOv5
detector and deep neural networks. In 2021 International Conference on Decision
Aid Sciences and Application (DASA)
(pp. 819-823). IEEE. https://doi.org/10.1109/dasa53625.2021.9682306


Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. https://doi.org/10.48550/arxiv.1409.1556


Wahab, N. K. A., Hemayed, E. E., & Fayek, M. B. (2012). HEARD: An automatic human EAR detection technique. In 2012 International Conference on Engineering and Technology (ICET) (pp. 1-7). IEEE. https://doi.org/10.1109/icengtechnol.2012.6396118


Wang, W., You, S., Karaoglu, S., & Gevers, T. (2022). A survey on kinship verification. Neurocomputing, 525, 1-28. https://doi.org/10.1016/j.neucom.2022.12.031


Yan, H., & Song, C. (2020). Multi-scale deep relational reasoning for facial kinship verification. Pattern Recognition, 110, Article 107541. https://doi.org/10.1016/j.patcog.2020.107541


Zhu, X., Li, Y., Li, D., Dong, L., & Chen, X. (2022). Lightweight transformer network and
self-supervised task for Kinship verification. In 2022 IEEE 8th International
Conference on Computer and Communications (ICCC)
(pp. 1506-1511). IEEE. https://doi.org/10.1109/iccc56324.2022.10066034



Creative Commons License
© The Author(s) 2025. This is an open access publication under CC BY NC licence.