--

9 (1) 2019

Interactions of Phlebopus spongiosus with several soil fungi and antibacterial activity of its culture broth


Author - Affiliation:
Pham Nguyen Duc Hoang - Institute of Mycology and Biotechnology , Vietnam
Ho Bao Thuy Quyen - Ho Chi Minh City Open University , Vietnam
Akira Suzuki - Tokyo City University; Agricultural Hi-Tech Park of Ho Chi Minh City
Corresponding author: Pham Nguyen Duc Hoang - quyen.hbt@ou.edu.vn

Abstract
An edible ectomycorrhizal fungus Phlebopus spongiosus have been found in pomelo orchards (Citrus maxima). The culture broth of Ph. spongiosus became darker after ca. 3 weeks of inoculation. The dry production of culture broth extract (culture extract) was 0.30 ± 0.09 g per culture (20 ml broth in a 50 ml flask). Both 5% and 10% solution of the culture extract shows the antibacterial activities on growth of all tested Gram positive bacteria Bacillus subtilis, Bacillus thuringiensis and a Gram negative bacterium Gluconobacter oxydans but not on the other Gram negative bacteria Escherichia coli and Asaia bogorensis. On PDA plates, Ph. spongiosus showed the inhibition on the growth of soil fungi Penicillium citrinum and Aspergillus niger, whereas it was invaded by that of a mycoparasite Trichoderma viride. Further studies on physiological and ecological characteristics and principal components for the activities of culture exudates in laboratory is necessary to find the applicable profits from this fungus.

Keywords
Bioactivity; culture broth; ectomycorrhizal mushroom; in vitrointeraction; mycelium

Full Text:
PDF

References

Alves, M. J., Ferreira, I. C. F. R., Froufe, H. J. C., Abreu, R. M. V., Martins, A., & Pintado, M. (2013). Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology, 115(2), 346-357.


Chang, S. T., & Miles, P. G. (2004). Mushrooms cultivation, nutritional value, medicinal effect, and environmental impact (2nd ed.). Boca Raton, FL: CRC Press LLC.


Cooke, R. C., & Rayner, A. D. M. (1984). Ecoloy of saprotrophic fungi. New York, NY: Longman Inc.


Cooke, R. C., & Whipps, J. M. (1993). Ecophysiology of fungi. Oxford, UK: Blackwell Scientific Publication.


Frankland, J. C., Hedger, J. N., & Swift, M. J. (1982). Decomposer basidiomycetes: Their biology and ecology. Cambridge, UK: Cambridge University Press.


Hara, M., Yoshida, M., Morimoto, H., & Nakano, H. (1987). 6-Deoxyilludin M, a new antitumor antibiotic: Fermentation, isolation and structural identification. The Journal of Antibiotics, 40(11), 1643-1646.


Harman, G. E., & Kubicek, C. P. (1998). Trichoderma and Gliocladium, volume 2: Enzymes, biological control and commercial applications. London, UK: Taylor and Francis Ltd.


Kaewnarin, K., Suwannarach, N., Kumla, J., & Lumyong, S. (2016). Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods, 27, 352-364.


Liaotracoon, W., & Liaotracoon, V. (2018). Influence of drying process on total phenolics, antioxidative activity and selected physical properties of edible bolete (Phlebopus colossus (R. Heim) Singer) and changes during storage. Journal of Food Science and Technology, Campinas, 38(2), 231-237.


Marx, D. H. (1969). The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology, 59, 153-163.


Ohshima, T. (2011). Various functionality of ergothioneine in fruiting bodies and solid cultivating media of mushrooms - meat color stabilization, antioxidative stress, skin whitening. In Proceeding of the 15th annual meeting of Japanese Society of Mushroom Science and Biotechnology (pp. 20-21).


Ohta, A. (1990). A new medium for mycelial growth of mycorrhizal fungi. Transactions of the Mycological Society of Japan, 31(3), 323-334.


Pham, N. D. H., Takahashi, H., Fukiharu, T., Shimizu, K., Le, B. D., & Suzuki, A. (2012a). Phlebopus spongiosus sp. nov. (Boletales, Boletinellaceae) with a sponge-like tissue. Mycotaxon, 119(1), 27-34. doi:10.5248/119.27


Pham, N. D. H., Yamada, A., Shimizu, K., Noda, K., Dang, L. A. T., & Suzuki, A. (2012b). A sheathing mycorrhiza between the tropical bolete Phlebopus spongiosus and Citrus maxima. Mycoscience, 53(5), 347-353. doi:10.1007/S10267-011-0177-5


Rutter, G. (2010). Fungi and humanity. In L. Boddy & M. Colemen (Eds.), From another kingdom the amazing world of fungi. Edinburgh, UK: Royal Botanic garden Edinburgh.


Sasek, V., & Musilek, V. (1967). Cultivation and antibiotic activity of mycorrhizal basidiomycetes. Folia Microbiologica, 12(6), 515-523.


Sentenac, A., Ruet, A., & Fromageot, P. (1968). Excision de la region du DNA liee a la RNA polymerase in vitro. Federation of European Biochemical Societies Letters, 2(1), 53-56.


Stamets, P. (2005). Mycelium running: How mushrooms can help save the world. Berkeley, CA: Ten Speed Press.


Wainwright, M. (2010). Amazing chemists. In L. Boddy & M. Colemen (Eds.), From another kingdom the amazing world of fungi. Edinburgh, UK: Royal Botanic garden Edinburgh.


Woodland, S., & Boddy, L. (2008). Interactions between saprotrophic fungi. In L. Boddy, J. C. Frankland & P. Van West (Eds.), Ecology of saprotrophic basidiomycetes. London, UK: Academic Press.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.