--

8 (2) 2018

Indentical synchronization in complete networks of reaction-diffusion equations of FitzHugh-Nagumo


Author - Affiliation:
Phan Van Long Em - An Giang University , Vietnam
Corresponding author: Phan Van Long Em - pvlem@agu.edu.vn

Abstract
Synchronization is a ubiquitous feature in many natural systems and nonlinear science. This paper studies the synchronization in complete network consisting of n nodes. Each node is connected to all other nodes by linear coupling and represented by a reaction-diffusion system of FitzHugh-Nagumo type which can be obtained by simplifying the famous Hodgkin-Huxley model. From this complete network, the author seeks a sufficient condition on the coupling strength to achieve synchronization. The result shows that the more easily the nodes synchronize, the bigger the degrees of the networks. Based on this consequence, the author will test the theoretical result numerically to see if there is a compromise.

Keywords
complete network; coupling strength; fitzhugh-nagumo model; synchronization

Full Text:
PDF

References

Ambrosio, B. (2009). Propagation d'ondes dans un milieu excitable: Simulations numériques et approche analytique (Master’s thesis). University Pierre and Marie Curie-Paris 6, Paris, France.


Ambrosio, B., & Aziz-Alaoui, M. A. (2012). Synchronisation dans un réseau d'équations aux dérivées partielles de type FitzHugh-Nagumo. In Actes du colloque EDP-Normandie (pp. 119-131).


Ambrosio, B., & Aziz-Alaoui, M. A. (2012). Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo-type. Computers and Mathematics with Applications, 64(5), 934-943.


Ambrosio, B., & Aziz-Alaoui, M. A. (2013). Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type. ESAIM: Proceedings, 39, 15-24.


Aziz-Alaoui, M. A. (2006). Synchronization of chaos. Encyclopedia of Mathematical Physics, Elsevier, 5, 213-226.


Corson, N. (2009). Dynamique d'un modèle neuronal, synchronisation et complexité. Retrieved January 10, 2017, from https://tel.archives-ouvertes.fr/file/index/docid/458094/filename/these_NC.pdf


Corson N., & Aziz-Alaoui, M. A. (2009). Complex emergent properties in synchronized neuronal oscillations. In M. A. Aziz-Alaoui & C. Bertelle (Eds.), From system complexity to emergent properties (pp. 243-259). Paris, France: Springer.


Ermentrout, G. B., & Terman, D. H. (2009). Mathematical foundations of neurosciences. Berlin, Germany: Springer.


Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology,117, 500-544.


Izhikevich, E. M. (2005). Dynamical systems in neuroscience: The geometry of excitability and bursting. London, England: The MIT Press, Cambrige, Massachusetts.


Izhikevich, E. M. (2007). Dynamical systems in neuroscience. London, England: The MIT Press.


Keener, J. P., & Sneyd, J. (2009). Mathematical physiology. New York, NY: Springer.


Murray, J. D. (2010). Mathematical biology. New York, NY: Springer.


Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IEEE, 50(10), 2061-2070.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.