--

8 (2) 2018

Effects of nutriental and environmental conditions on carotenoid biosynthesis by Rhodotorula sp.


Author - Affiliation:
Ly Thi Minh Hien - Ho Chi Minh City Open University , Vietnam
Dong Thi Anh Dao - Ho Chi Minh City University of Technology, Vietnam National University HCMC , Vietnam
Corresponding author: Ly Thi Minh Hien - hien.ltm@ou.edu.vn

Abstract
Carotenoid compounds are popular natural antioxidants which are commonly isolated from the plants. Recently, there have been many researches on carotenoid biosynthesis towards low cost products. In this study, Rhodotorula sp. was grown on an agricultural byproduct (corncobs) as a matrix in solid-state fermentation. Essential nutrients were added with different concentrations to optimize condition for the carotenoid biosynthesis. Effects of
other environmental factors such as moisture content and fermentation time on the yield were also characterized. The optimal nutrient composition for the yeast’s growth and carotenoid biosynthesis is a compound of 500μg nitrogen and 16mg carbon in 100g matrix. Additionally, the moisture content of 80% is the best for producing carotenoid by this yeast strain. The fermentation time for the highest carotenoid yield is observed after 8 days.

Keywords
Biosynthesis; carotenoid;Rhodotorula

Full Text:
PDF

References

Bhosale, P., & Gadre, R.V. (2001). Beta-carotene production in sugarcane molasses by A Rhodotorula glutinis mutant. Journal of Industrial Microbiology & Biotechnology, 26, 327-332.


Braunwald, T., Schwemmlein, L., Graeff-Hönninger, S., French, W. T., Hernandez, R., Holmes, W. E., & Claupein, W. (2013). Effect of different C/N ratios on Carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology, 97, 6581-6588. doi:10.1007/s00253-013-5005-8


Buzzini, P. (2000). An optimization study of carotenoid production by Rhodotorula glutinis from substrates containing concentrated rectified grape must as the sole carbohydrate source. Journal of Insdustrial Microbiology & Biotechnology, 24, 41-45.


Chandi, G. K., Singh, S. P., Gill, B. S., Sogi, D. S., & Singh, P. (2010). Optimization of carotenoids by Rhodotorula glutinis. Food Science and Biotechnology, 19(4), 881-887.


Gientka, I., Kieliszek, M., Jermacz, K., & Błażejak, S. (2017). Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. Biomed Research International, 2017, Article 6061042. doi:10.1155/2017/6061042


Cong, L., Chi, Z., Li, J., & Wang, X. (2007). Enhanced carotenoid production by a mutant of the marine yeast Rhodotorula sp. hidai. Journal of Ocean University of China (Oceanic and Coastal Sea Research), 6(1), 66-71.


Govindaswamy, V., Vasudevan, V., & Divakar, S. (1998). Optimisation of growth parameters for the production of carotenoids by Rhodotorula gracilis. Z Lebensm Unters Forsch A, 208, 121-124.


Easterling, E. R., French, W. T., Hernandez, R., & Licha, M. (2009). The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresource Technology, 100(1), 356-361.


Hernandez-Almanzaa, A., Montanez-Saenza, J., Martınez-Avilab, C., Rodriguez-Herreraa, R., & Aguilar, C. N. (2014). Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Bioscience, 7, 31-36.


Kim, S. G., Chu, K. H., & Kim E. Y. (2011). Determination of optimum fermentation conditions for carotenoid production by Rhodotorula aurantiaca K-505. Korean Journal of Chemical Engineering, 28(1), 216-220.


Kot, A. M., Kurcz, A., Bry, J., Gientka, I., Bzducha-wróbel, A., Maliszewska, M., & Reczek, L. (2017). Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology, 27, 25-31. doi:10.1016/j.ejbt.2017.01.007


Libkind, D., Brizzio, S., & Van Broock, M. (2004). Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a patagonian high-altitude lake. Folia Microbiol, 49 (1), 19-25.


Park, P. K., Cho, D. H., Kim, E. Y., & Chu, K. H. (2005). Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design. World Journal of Microbiology & Biotechnology, 21, 429-434.


Petrik, S., Marova, I., Haronikova, A., Kostovova, I., & Breierova, E. (2013). Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production - A comparative screening study. Annals of Microbiology, 63, 1537-1551.


Roadjanakamolson, M., & Suntornsuk, W. (2010), Production of β-carotene-enriched rice bran using solid-state fermentation of rhodotorula glutinis. Journal of Microbiolog and Biotechnology, 20(3), 525-531.


Silva, R. S., Moura, E. F., de Farias Neto, J. T., Sousa, N. R., Moura, M. F., & Sampaio, J. E. (2016). Genetic divergence among accessions of cassava (Manihot esculenta Crantz) sampled in the Tapajós region, State of Pará, using agronomic characters and microsatellite markers. The Journal Semina Ciencias Agrarias, 37(5), 2989-3004.


Somashekar, D., & Joseph, R. (2000). Inverse relationship between carotenoid and lipid formationin Rhodotorula gracilis according to the C/N ratio of the growth medium. World Journal of Microbiology & Biotechnology, 16, 491-493.


Taskin, M., Sisman, T., Erdal, S., & Kurbanoglu, E. B. (2011). Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. European Food Research and Technology, 233, 657-665.


Vijayalakshmi, G., Shobha, B., Vanajakshi, V., Divakar, S., & Manohar, B. (2001). Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracilis. European Food Research and Technology, 213, 234-239.


Wang, S. L., Sun, J. S., Han, B. Z., & Wu, X. Z. (2008). Enhanced β-carotene production by Rhodotorula glutinis using high hydrostatic pressure. Korean Journal of Chemical Engineering, 25(3), 513-516.


Yadav, S. K., & Prabha, R. (2014). Effect of pH and temperature on carotenoid pigments produced from Rhodotorula minuta. International Journal of Fermented Foods, 3(2), 105-113.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.