--

8 (1) 2018

The Microrna 29 family and its regulation


Author - Affiliation:
Le Thi Truc Linh - Ho Chi Minh City Open University, Vietnam , Vietnam
Corresponding author: Le Thi Truc Linh - linh.ltt@ou.edu.vn

Abstract
Since miRNAs have broad effects on tissue homeostasis, and disease development, it is particularly interesting to work out how miRNAs themselves are being regulated. Such data could provide crucial information for further understanding the mechanism underlying disease development and for being able to manipulate these miRNAs therapeutically. Generally, the expression of miRNAs can be regulated transcriptionally, epigenetically, or
controlled by different stimuli e.g. cytokines and growth factors. In review, just transcription factors, cytokines, and growth factors controlling the miR-29 family expression in human diseases were for the first time investigated.

Keywords
growth factors; microRNAs; MiR-29 family;transcription factors

Full Text:
PDF

References

Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350-355.


Amodio, N., Di Martino, M. T., Foresta, U., Leone, E., Lionetti, M., Leotta, M., ... Tassone, P. (2012). miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Disease, 3. doi:10.1038/cddis.2012.175


Avasarala, S., Van Scoyk, M., Wang, J., Sechler, M., Vandervest, K., Brzezinski, C., … Winn, R. A. (2013). hsa-miR29b, a critical downstream target of non-canonical Wnt signaling, plays an anti-proliferative role in non-small cell lung cancer cells via targeting MDM2 expression. Biology Open, 2(7), 675-685. doi:10.1242/bio.20134507


Bartel, D. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297.


Bartel, D. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215-233.


Berezikov, E., Chung, W.-J., Willis, J., Cuppen, E., & Lai, E. (2007). Mammalian mirtron genes. Molecular Cell, 28(2), 328-336.


Bohnsack, M., Czaplinski, K., & Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA (New York, N.Y.), 10(2), 185-191.


Bossé, G., & Simard, M. (2010). A new twist in the microRNA pathway: Not Dicer but Argonaute is required for a microRNA production. Cell Research, 20(7), 735-737.


Cai, J., Yin, G., Lin, B., Wang, X., Liu, X., Chen, X., . . . Wu, S. (2014). Roles of NFkappaB -miR-29s-MMP-2 circuitry in experimental choroidal neovascularization. Journal of Neuroinflammation, 11(1), 1-21. doi:10.1186/1742-2094-11-88


Cai, X., Hagedorn, C., & Cullen, B. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA (New York, N.Y.), 10(12), 1957-1966.


Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., . . . Mendell, J. T. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43-50. doi:10.1038/ng.2007.30


Chen, C., Ridzon, D., Broomer, A., Zhou, Z., Lee, D., Nguyen, J., . . . Guegler, K. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33(20), e179.


Chendrimada, T., Gregory, R., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., & Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740-744.


Chou, J., Lin, J. H., Brenot, A., Kim, J. W., Provot, S., & Werb, Z. (2013). GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nature Cell Biology, 15(2), 201-213. doi:10.1038/ncb2672


Cushing, L., Kuang, P. P., Qian, J., Shao, F., Wu, J., Little, F., . . . Lu, J. (2011). miR -29 is a major regulator of genes associated with pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 45(2), 287-294. doi:10.1165/rcmb.2010-0323OC


Eyholzer, M., Schmid, S., Wilkens, L., Mueller, B. U., & Pabst, T. (2010). The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. British Journal of Cancer, 103(2), 275-284. doi:10.1038/sj.bjc.6605751


Friedman, R., Farh, K., Burge, C., & Bartel, D. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92-105.


Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., . . . Mello, C. C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106(1), 23-34.


Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404(6775), 293-296.


Han, J., Lee, Y., Yeom, K.-H., Kim, Y.-K., Jin, H., & Kim, N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18(24), 3016-3027.


Hu, Z., Klein, J. D., Mitch, W. E., Zhang, L., Martinez, I., & Wang, X. H. (2014). MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY), 6(3), 160-175.


Hutvagner, G. (2005). Small RNA asymmetry in RNAi: Function in RISC assembly and gene regulation. FEBS Letters, 579(26), 5850-5857.


Hutvagner, G., & Simard, M. (2008). Argonaute proteins: Key players in RNA silencing. Nature Reviews. Molecular Cell Biology, 9(1), 22-32.


Hutvagner, G., McLachlan, J., Pasquinelli, A., Bálint, É., Tuschl, T., & Zamore, P. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531), 834-838.


Inui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nature Reviews. Molecular Cell Biology, 11(4), 252-263.


Kapinas, K., Kessler, C., & Delany, A. (2009). miR-29 suppression of osteonectin in osteoblasts: Regulation during differentiation and by canonical Wnt signaling. Journal of Cellular Biochemistry,108(1), 216-224.


Kapinas, K., Kessler, C., Ricks, T., Gronowicz, G., & Delany, A. M. (2010). miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. Journal of Biological Chemistry, 285(33), 25221-25231. doi:10.1074/jbc.M110.116137


Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., & Plasterk, R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & Development, 15(20), 2654-2659.


Khvorova, A., Reynolds, A., & Jayasena, S. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2), 209-216.


Kim, N. (2005). MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6(5), 376-385.


Kozomara, A., & Griffiths-Jones, S. (2011). miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39, D152-D157.


Kwiecinski, M., Noetel, A., Elfimova, N., Trebicka, J., Schievenbusch, S., Strack, I., . . . Odenthal, M. (2011). Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One, 6(9), e24568. doi:10.1371/journal.pone.0024568


Lai, E. (2002). Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 30(4), 363-364.


Lau, P.-W., & MacRae, I. (2009). The molecular machines that mediate microRNA maturation. Journal of Cellular and Molecular Medicine, 13(1), 54-60.


Lee, Y., Jeon, K., Lee, J.-T., Kim, S., & Kim, N. (2002). MicroRNA maturation: Stepwise processing and subcellular localization. The EMBO Journal, 21 (17), 4663-4670.


Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., . . . Kim, N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415-419.


Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S., & Kim, N. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal, 23(20), 4051-4060.


Lewis, B., Burge, C., & Bartel, D. (2005). conserved seed pairing, often flanked by Adenosines, indicates that thousands of human genes are MicroRNA targets. Cell, 120(1), 15-20.


Li, N., Cui, J., Duan, X., Chen, H., & Fan, F. (2012). Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human Tenon's fibroblasts. Investigative Ophthalmology & Visual Science, 53(3), 1670-1678. doi:10.1167/iovs.11-8670


Lim, L., Lau, N., Garrett-Engele, P., Grimson, A., Schelter, J., Castle, J., . . . Johnson, J. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769-773.


Liu, S., Wu, L. C., Pang, J., Santhanam, R., Schwind, S., Wu, Y. Z., . . . Marcucci, G. (2010). Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell, 17(4), 333-347. doi:10.1016/j.ccr.2010.03.008


Lund, E., Güttinger, S., Calado, A., Dahlberg, J., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303(5654), 95-98.


Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., . . . Cao, X. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nature Immunology, 12(9), 861-869. doi:10.1038/ni.2073


Maegdefessel, L., Azuma, J., Toh, R., Merk, D. R., Deng, A., Chin, J. T., . . . Tsao, P. S. (2012). Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. Journal of Clinical Investigation, 122(2), 497-506. doi:10.1172/JCI61598


Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563-574.


Maurer, B., Stanczyk, J., Jungel, A., Akhmetshina, A., Trenkmann, M., Brock, M., . . . Distler, O. (2010). MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum, 62(6), 1733-1743. doi:10.1002/art.27443


Mott, J. L., Kurita, S., Cazanave, S. C., Bronk, S. F., Werneburg, N. W., & Fernandez-Zapico, M. E. (2010). Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. Journal of Cellular Biochemistry, 110(5), 1155-1164. doi:10.1002/jcb.22630


Okamura, K., Hagen, J., Duan, H., Tyler, D., & Lai, E. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 130(1), 89-100.


Parpart, S., Roessler, S., Dong, F., Rao, V., Takai, A., Ji, J., . . . Wang, X. W. (2014). Modulation of miR-29 expression by alpha-fetoprotein is linked to the hepatocellular carcinoma epigenome. Hepatology, 60(3), 872-883. doi:10.1002/hep.27200


Qin, W., Chung, A. C., Huang, X. R., Meng, X. M., Hui, D. S., Yu, C. M., . . . Lan, H. Y. (2011). TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. Journal of the American Society of Nephrology, 22(8), 1462-1474. doi:10.1681/ASN.2010121308


Ramdas, V., McBride, M., Denby, L., & Baker, A. H. (2013). Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. The American Journal of Pathology, 183 (6), 1885-1896. doi:10.1016/j.ajpath.2013.08.027


Ro, S., Park, C., Young, D., Sanders, K., & Yan, W. (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Research, 35(17), 5944-5953.


Roderburg, C., Urban, G. W., Bettermann, K., Vucur, M., Zimmermann, H., Schmidt, S., . . . Luedde, T. (2011). Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 53(1), 209-218. doi:10.1002/hep.23922


Ruby, G., Jan, C., & Bartel, D. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448(7149), 83-86.


Saini, H. K., Griffiths-Jones, S., & Enright, A. J. (2007). Genomic analysis of human microRNA transcripts. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17719-17724. doi:10.1073/pnas.0703890104


Schmitt, M. J., Margue, C., Behrmann, I., & Kreis, S. (2013). MiRNA-29: A microRNA family with tumor-suppressing and immune-modulating properties. Current Molecular Medicine, 13(4), 572-585.


Schwarz, D., Hutvágner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2), 199-208.


Sibley, C., Seow, Y., Saayman, S., Dijkstra, K., El Andaloussi, S., Weinberg, M., & Wood, M. (2012). The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Research, 40(1), 438-448.


Steele, R., Mott, J. L., & Ray, R. B. (2010). MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer, 1(4), 381-387. doi:10.1177/1947601910371978


Suomi, S., Taipaleenmäki, H., Seppänen, A., Ripatti, T., Väänänen, K., Hentunen, T., . . . Laitala-Leinonen, T. (2008). MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regulation and Systems Biology, 2, 177-191.


Wang, B., Komers, R., Carew, R., Winbanks, C. E., Xu, B., Herman-Edelstein, M., . . . Kantharidis, P. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. Journal of the American Society of Nephrology, 23(2), 252-265. doi:10.1681/ASN.2011010055


Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., . . . Guttridge, D. C. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369-381. doi:10.1016/j.ccr.2008.10.006


Westholm, J., & Lai, E. (2011). Mirtrons: microRNA biogenesis via splicing. Biochimie, 93(11), 1897-1904.


Yang, T., Liang, Y., Lin, Q., Liu, J., Luo, F., Li, X., . . . Zhang, H. (2013). miR-29 mediates TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. Journal of Cellular Biochemistry, 114(6), 1336-1342. doi:10.1002/jcb.24474


Yi, R., Qin, Y., Macara, I., & Cullen, B. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development, 17(24), 3011-3016.


Zeng, Y., & Cullen, B. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Research, 32(16), 4776-4785.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.