--

14(1)2024

Integrating BIM and computer vision for preventing Hazards at construction sites


Author - Affiliation:
Si Tran - Chung-Ang University, Seoul
Corresponding author: Si Tran - sitran.cauvn@gmail.com
Submitted: 17-09-2023
Accepted: 04-01-2024
Published: 05-03-2024

Abstract
Construction safety monitoring is vital in enhancing site safety, such as tracking entering hazardous areas and the correlation between workers and other hazard entities. Therein, computer vision-based image/video processing, one of the emerging technologies, has been actively used to automatically identify and recognize unsafe conditions. However, the construction site has various potential hazard situations during the project. Due to the site’s complexity, many visual devices simultaneously participate in monitoring. It challenges developing and operating corresponding detection algorithms at specific workplaces and times. Besides, safety information detected by computer vision must be organized before being delivered to stakeholders. Hence, this study proposes an approach for construction safety monitoring using vision intelligence technology and BIM-cloud, called BMT. The BMT comprises two modules: (1) the virtual model based on the 4D BIM-cloud model, which provides the spatial-temporal information to decide computer vision algorithm adoptions; (2) the construction physical model built the vision intelligence technologies, which is supported by (1) and deliver safety status and update into the BIM-cloud model to visualize and deliver the risk level to related employees. The efficiency of the BMT approach is validated by testing with the preliminary implementation of a prototype.

Keywords
construction safety monitoring; computer vision; BIM

Full Text:
PDF

Cite this paper as:

Tran, S. (2024). Integrating BIM and computer vision for preventing Hazards at construction sites. Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 14(1), 21-30. doi:10.46223/HCMCOUJS.tech.en.14.1.2966.2024


References

Akram, R., Thaheem, M. J., Nasir, A. R., Ali, T. H., & Khan, S. (2019). Exploring the role of building information modeling in construction safety through science mapping. Safety Science, 120, 456-470. doi:10.1016/J.SSCI.2019.07.036


Cortés-Pérez, J. P., Cortés-Pérez, A., & Prieto-Muriel, P. (2020). BIM-integrated management of occupational hazards in building construction and maintenance. Automation in Construction, 113,  Article 103115. doi:10.1016/J.AUTCON.2020.103115


Fang, W., Ding, L., Love, P. E. D., Luo, H., Li, H., Peña-Mora, F., … Zhou, C. (2020). Computer vision applications in construction safety assurance. Automation in Construction, 110(December 2019), Article 103013. doi:10.1016/j.autcon.2019.103013


Huang, M. Q., Ninić, J., & Zhang, Q. B. (2021). BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunnelling and Underground Space Technology, 108,  Article 103677. doi:10.1016/J.TUST.2020.103677


Jin, R., Zhang, H., Liu, D., & Yan, X. (2020). IoT-based detecting, locating and alarming of unauthorized intrusion on construction sites. Automation in Construction, 118,  Article 103278. doi:10.1016/J.AUTCON.2020.103278


Kanan, R., Elhassan, O., & Bensalem, R. (2018). An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Automation in Construction, 88, 73-86. doi:10.1016/J.AUTCON.2017.12.033


Khan, M., Khalid, R., Anjum, S., Tran, S. T. V., & Park, C. (2022). Fall prevention from scaffolding using computer vision and IoT-Based monitoring. Journal of Construction Engineering and Management, 148(7), Article 04022051. doi:10.1061/(ASCE)CO.1943-7862.0002278


Kim, D., Liu, M., Lee, S. H., & Kamat, V. R. (2019). Remote proximity monitoring between mobile construction resources using camera-mounted UAVs. Automation in Construction, 99, 168-182. doi:10.1016/J.AUTCON.2018.12.014


Liu, M., Han, S., & Lee, S. (2016). Tracking-based 3D human skeleton extraction from stereo video camera toward an on-site safety and ergonomic analysis. Construction Innovation, 16(3), 348-367. doi:10.1108/CI-10-2015-0054/FULL/PDF


Love, P. E. D., Matthews, J., Fang, W., & Luo, H. (2023). Benefits realization management of computer vision in construction: A missed, yet not lost, opportunity. doi:10.1016/j.eng.2022.09.009


Newmetrix. (n.d.). Reduce jobsite risk with the power of AI. Retrieved October 06, 2022, from https://www.newmetrix.com/


Nguyen, H. T., Nguyen, L. V., Jung, J. J., Agbehadji, I. E., Frimpong, S. O., & Millham, R. C. (2020). Bio-inspired approaches for smart energy management: State of the art and challenges. Sustainability, 12(20), Article 8495. doi:10.3390/SU12208495


Occupational Safety and Health Administration. (n.d.). OSHA fatality report. Retrieved October 06, 2022, from https://www.osha.gov/stop-falls


Soltani, M. M., Zhu, Z., & Hammad, A. (2018). Framework for location data fusion and pose estimation of excavators using stereo vision. Journal of Computing in Civil Engineering, 32(6), Article 04018045. doi:10.1061/(ASCE)CP.1943-5487.0000783


Statistics Korea. (n.d.). Construction work. Retrieved October 06, 2022, from http://kostat.go.kr/portal/eng/pressReleases/4/5/index.board


Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., & Gao, X. (2019). A review of Building Information Modeling (BIM) and the Internet of Things (IoT) devices integration: Present status and future trends. Automation in Construction, 101, 127-139. doi:10.1016/J.AUTCON.2019.01.020


Tran, S. T. V., Ali, A. K., Khan, N., Lee, D., & Park, C. (2020). A framework for camera planning in construction site using 4d bim and vpl. Proceedings of the 37th International Symposium on Automation and Robotics in Construction, ISARC 2020: From Demonstration to Practical Use - To New Stage of Construction Robot, 1404-1408. doi:10.22260/ISARC2020/0194


Tran, S. T. V., Khan, N., Lee, D., & Park, C. (2021). A hazard identification approach of integrating 4D BIM and accident case analysis of spatial-temporal exposure. Sustainability, 13(4), Article 2211. doi:10.3390/SU13042211


Tran, S. T. V., Lee, D., Bao, L. Q., Yoo, T., Khan, M., Jo, J., & Park, C. (2023). A human detection approach for intrusion in hazardous areas using 4D-BIM-Based spatial-temporal analysis and computer vision. Buildings, 13(9), Article 2313. doi:10.3390/BUILDINGS13092313


Tran, S. T. V., Nguyen, L. T., Chi, H.-L., Lee, D., & Park, C. (2022). Generative planning for construction safety surveillance camera installation in 4D BIM environment. Automation in Construction, 134,  Article 104103. doi:10.1016/J.AUTCON.2021.104103


Valinejadshoubi, M., Moselhi, O., Bagchi, A., & Salem, A. (2021). Development of an IoT and BIM-based automated alert system for thermal comfort monitoring in buildings. Sustainable Cities and Society, 66, Article 102602. doi:10.1016/j.scs.2020.102602


Wu, Z., Chen, C., Cai, Y., Lu, C., Wang, H., & Yu, T. (2019). BIM- based visualization research in the construction industry: A network analysis. International Journal of Environmental Research and Public Health, 16(18), Article 3473. doi:10.3390/ijerph16183473


Xu, J., Lu, W., Wu, L., Lou, J., & Li, X. (2022). Balancing privacy and occupational safety and health in construction: A blockchain-enabled P-OSH deployment framework. Safety Science, 154,  Article 105860. doi:10.1016/J.SSCI.2022.105860


Zhang, M., Shi, R., & Yang, Z. (2020). A critical review of vision-based occupational health and safety monitoring of construction site workers. Safety Science, 126,  Article 104658. doi:10.1016/j.ssci.2020.104658


Zhou, X., Li, H., Wang, J., Zhao, J., Xie, Q., Li, L., … Yu, J. (2022). CloudFAS: Cloud-based building fire alarm system using Building Information Modelling. Journal of Building Engineering, 53, Article 104571. doi:10.1016/J.JOBE.2022.104571



Creative Commons License
© The Author(s) 2024. This is an open access publication under CC BY NC licence.