--

14(1)2024

A sum rate maximization problem in uplink MIMO with RSMA systems


Author - Affiliation:
Phung Truong - Sejong University, Seoul
Corresponding author: Phung Truong - thanhphung2110@gmail.com
Submitted: 07-09-2023
Accepted: 23-10-2023
Published: 05-03-2024

Abstract
This study explores the problem of maximizing the sum rate in uplink multi-user Multiple-Input Multiple-Output (MIMO) using Rate-Splitting Multiple Access (RSMA) systems. The investigation revolves around the scenario where the Users (UEs) are single-antenna nodes transmitting data to a multi-antenna Base Station (BS) through the RSMA technique. The optimization process encompasses determining parameters such as UEs’ transmit powers, decoding order, and detection vector at the BS. An approach based on Deep Reinforcement Learning (DRL) is introduced to address this challenge. This DRL framework involves an action-refined stage and applies a Deep Deterministic Policy Gradient (DDPG)-based strategy. Simulation outcomes effectively demonstrate the convergence of the proposed DRL framework, where it converges after approximately 1,800 episodes. Also, the results prove the superior performance of the proposed method when compared to established benchmark strategies, where it is up to 45% and 86% higher than the local search and random schemes, respectively.

Keywords
deep reinforcement learning; multiple-input multiple-output; rate splitting multiple access; sum rate maximization

Full Text:
PDF

Cite this paper as:

Truong, P. (2024). A sum rate maximization problem in uplink MIMO with RSMA systems. Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 14(1), 13-20. doi:10.46223/HCMCOUJS.tech.en.14.1.2955.2024


References

de Sena, A. S., Nardelli, P. H. J., da Costa, D. B., Popovski, P., Papadias, C. B., & Debbah, M. (2022). RSMA for Dual-Polarized massive MIMO networks: A SIC-Free Approach. Paper presented at the GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil.


Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., … Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. Paper presented at the ICLR2016 - 6th International Conference on Learning Representations, Vancouver, BC, Canada.


Ma, X., Chen, Z., Chen, W., Li, Z., Chi, Y., Han, C., & Li, S. (2020). Joint channel estimation and data rate maximization for intelligent reflecting surface assisted terahertz MIMO communication systems. IEEE Access, 8, 99565-99581.  doi:10.1109/ACCESS.2020.2994100


Ma, Y., Ren, S., Quan, Z., & Feng, Z. (2022). Data-driven hybrid beamforming for uplink multi-user MIMO in mobile millimeter-wave systems. IEEE Transactions on Wireless Communications, 21(11), 9341-9350. doi:10.1109/TWC.2022.3175878


Mao, Y., Dizdar, O., Clerckx, B., Schober, R., Popovski, P., & Poor, H. V. (2022). Rate-splitting multiple access: Fundamentals, survey, and future research trends. IEEE Communications Surveys & Tutorials, 24(4), 2073-2126. doi:10.1109/COMST.2022.3191937


Nguyen, L. V., Vo, Q. T., & Nguyen, T. H. (2023). Adaptive KNN-Based extended collaborative filtering recommendation services. Big Data and Cognitive Computing, 7(2), Article 106. doi:10.3390/bdcc7020106


Nguyen, T. H., & Park, L. (2023). HAP-Assisted RSMA-Enabled vehicular edge computing: A DRL-based optimization framework. Mathematics 11(10), Article 2376. doi:10.3390/math11102376


Nguyen, T. H., Park, H., & Park, L. (2023). Recent studies on deep reinforcement learning in RIS-UAV communication networks. Paper presented at the 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Bali, Indonesia.


Nguyen, T. H., Park, H., Seol, K., So, S., & Park, L. (2023). Applications of deep learning and deep reinforcement learning in 6G networks. Paper presented at the 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), Paris, France.


Park, J., Choi, J., Lee, N., Shin, W., & Poor, H. V. (2023). Rate-Splitting multiple access for downlink MIMO: A generalized power iteration approach. IEEE Transactions on Wireless Communications, 22(3), 1588-1603. doi:10.1109/TWC.2022.3205480


Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.


Tran, S. V. T., Bao, Q. L., Nguyen, T. L., & Park, C. (2022). A framework for computer vision-aided construction safety monitoring using collaborative 4D BIM. Paper presented at the ICCEPM 2022 - The 9th International Conference on Construction Engineering and Project Management, Las Vegas, NV, USA.


Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical Review, 36(5), Article 823.


Yang, Z., Chen, M., Saad, W., Xu, W., & Shikh-Bahaei, M. (2022). Sum-Rate maximization of uplink Rate Splitting Multiple Access (RSMA) communication. IEEE Transactions on Mobile Computing, 21(7), 2596-2609. doi:10.1109/TMC.2020.3037374


Zheng, G., Wong, K. K., & Ng, T. S.  (2009). Energy-efficient multiuser SIMO: Achieving probabilistic robustness with gaussian channel uncertainty. IEEE Transactions on Communications, 57(6), 1866-1878. doi:10.1109/TCOMM.2009.06.070574



Creative Commons License
© The Author(s) 2024. This is an open access publication under CC BY NC licence.