--

13(2)2023

Communicable disease surveillance through predictive analysis: A comparative analysis of prediction models


Author - Affiliation:
Villi Dane M. Go - MarinduqueState College
Corresponding author: Villi Dane M. Go - villidanego@gmail.com
Submitted: 29-08-2023
Accepted: 01-10-2023
Published: 31-10-2023

Abstract
Effective prediction and surveillance of communicable diseases are vital for public health management. This study leveraged machine learning algorithms to predict disease occurrences in the Province of Marinduque, focusing on Hand Foot Mouth Disease, Dengue, Typhoid, Influenza, Chikungunya, Rabies, Measles, Meningitis, Hepatitis, and Acute Bloody Diarrhea using data from 2015 to 2019. The monthly morbidity rate served as the criterion variable. Machine learning models, including Random Forest, Logistic Regression, SVM, and k-Nearest Neighbors, were employed. Material and methods encompassed data collection, preprocessing, feature selection, and model evaluation. Results revealed Random Forest as the most accurate algorithm, with implications for proactive disease management and resource allocation. This research enhances disease prediction methodologies and contributes to public health surveillance.

Keywords
communicable disease prediction; disease prediction; early detection; machine learning; public health planning

Full Text:
PDF

Cite this paper as:

Go, V. D. M. (2023). Communicable disease surveillance through predictive analysis: A comparative analysis of prediction models. Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 13(2), 45-54. doi:10.46223/HCMCOUJS.tech.en.13.2.2944.2023


References

Awad, M., & Khanna, R. (2015). Support vector machines for classification. In Efficient learning machines: Theories, concepts, and applications for engineers and system designers (pp. 39-66). New York, NY: Apress OPEN.


Baquero, O. S., Santana, L. M. R., & Chiaravalloti-Neto, F. (2018). Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PloS One13(4), 1-8.


Benedum, C. M., Shea, K. M., Jenkins, H. E., Kim, L. Y., & Markuzon, N. (2020). Weekly dengue forecasts in Iquitos, Peru; San Juan, Puerto Rico; and Singapore. PLoS Neglected Tropical Diseases14(10), 1-19.


Bomfim, R., Pei, S., Shaman, J., Yamana, T., Makse, H. A., Andrade, J. S., Jr., ... Furtado, V. (2020). Predicting dengue outbreaks at neighbourhood level using human mobility in urban areas. Journal of the Royal Society Interface17(171), 1-17.


Chakraborty, T., Chattopadhyay, S., & Ghosh, I. (2019). Forecasting dengue epidemics using a hybrid methodology. Physica A: Statistical Mechanics and Its Applications527, 1-8.


Cheng, H. Y., Wu, Y. C., Lin, M. H., Liu, Y. L., Tsai, Y. Y., Wu, J. H., ... Chuang, J. H. (2020). Applying machine learning models with an ensemble approach for accurate real-time influenza forecasting in Taiwan: Development and validation study. Journal of Medical Internet Research22(8), 1-8.


Colón-González, F. J., Soares Bastos, L., Hofmann, B., Hopkin, A., Harpham, Q., Crocker, T., ... Lowe, R. (2021). Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles. PLoS Medicine18(3), 1-20.


Gimenez, J. R., & Zou, J. (2019, May). Discovering conditionally salient features with statistical guarantees. In International conference on machine learning (pp. 2290-2298). London, UK: PMLR.


Li, J. J., & Tong, X. (2020). Statistical hypothesis testing versus machine learning binary classification: Distinctions and guidelines. Patterns, 1(7), 1-10. doi:10.1016/j.patter.2020.100115


Liu, D., Guo, S., Zou, M., Chen, C., Deng, F., Xie, Z., ... Wu, L. (2019). A dengue fever predicting model based on Baidu search index data and climate data in South China. PLoS One14(12), 1-16.


McGough, S. F., Clemente, L., Kutz, J. N., & Santillana, M. (2021). A dynamic, ensemble learning approach to forecast dengue fever epidemic years in Brazil using weather and population susceptibility cycles. Journal of the Royal Society Interface18(179), 1-10.


Salim, N. A. M., Wah, Y. B., Reeves, C., Smith, M., Yaacob, W. F. W., Mudin, R. N., ... Haque, U. (2021). Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques. Scientific Reports11(1), 1-9.


Savargiv, M., Masoumi, B., & Keyvanpour, M. R. (2021). A new random forest algorithm based on learning automata. Computational Intelligence and Neuroscience, 2021, 1-19. doi:10.1155/2021/5572781


Senan, E. M., Al-Adhaileh, M. H., Alsaade, F. W., Aldhyani, T. H., Alqarni, A. A., Alsharif, N., ... Alzahrani, M. Y. (2021). Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques. Journal of Healthcare Engineering2021, 1-10.


Sinaga, L. M., & Suwilo, S. (2020). Analysis of classification and Naïve Bayes algorithm k-nearest neighbor in data mining. IOP Conference Series: Materials Science and Engineering, 725(1), Article 012106.


Xu, J., Xu, K., Li, Z., Meng, F., Tu, T., Xu, L., & Liu, Q. (2020). Forecast of dengue cases in 20 Chinese cities based on the deep learning method. International Journal of Environmental Research and Public Health17(2), 1-17.


Xu, J., Xu, K., Li, Z., Tu, T., Xu, L., & Liu, Q. (2019). Developing a dengue forecast model using Long Short Term Memory neural networks method. Retrieved January 10, 2023, from https://www.biorxiv.org/content/10.1101/760702v1.full.pdf


Xu, Y., Wang, Q., An, Z., Wang, F., Zhang, L., Wu, Y., … Roepman, R. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 1-21.


Zhao, N., Charland, K., Carabali, M., Nsoesie, E. O., Maheu-Giroux, M., Rees, E., ... Zinszer, K. (2020). Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLOS Neglected Tropical Diseases14(9), 1-11.



Creative Commons License
© The Author(s) 2023. This is an open access publication under CC BY NC licence.