--

13(2)2023

Establishment of protocol to investigate the expression of Sucrose Phosphate Synthase 2 (SPS2) in Vietnamese golden melon (cucumis melo L.)


Author - Affiliation:
Nguyen Tran Dong Phuong - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Tran Tan Dat - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Thieu Hong Hue - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Le Huyen Ai Thuy - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Lao Duc Thuan - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Corresponding author: Nguyen Tran Dong Phuong - phuong.ntd@ou.edu.vn
Submitted: 25-05-2023
Accepted: 20-06-2023
Published: 31-10-2023

Abstract
The accumulation of soluble sugars, especially sucrose, in mature Vietnamese golden melon, has been reported to be the determining factor of the sweetness of fruits. The gene of SPS2 has been shown to be mainly involved in the metabolic signal pathway as those for the synthesis of sucrose. The purpose of the current study is to establish a procedure to investigate the expression of the gene of SPS2 in Cucumis melo L. The materials of melon’s exocarp and mesocarp tissues were applied to isolate the total of RNAs. The procedure of Real-time PCR within the primers of SPS-F and SPS-R was successfully established as seen through the results. As a result, the cycle threshold (Ct) of 27.19, and 28.12, respectively, were observed in the sample of exocarp and mesocarp tissues. For authenticity, the products were sequenced, as determined as the gene of SPS by BLAST (NCBI). In conclusion, the procedure of investigation of SPSs gene expression was successfully established in Cucumis melo L.

Keywords
cucumis; gene expression; melon; SPS2

Full Text:
PDF

Cite this paper as:

Nguyen, P. T. D., Tran, D. T., Thieu, H. H., Le, T. H. A., & Lao, T. D. (2023). Establishment of protocol to investigate the expression of Sucrose Phosphate Synthase 2 (SPS2) in Vietnamese golden melon (cucumis melo L.). Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 13(2), 55-59. doi:10.46223/HCMCOUJS.tech.en.13.2.2786.2023


References

Anur, R. M., Mufithah, N., Sawitri, W. D., Sakakibara, H., & Sugiharto, B. (2020). Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants, 9(2), 1-11. doi: 10.3390/plants9020200


Chen, T., Zhang, Z., Li, B., Qin, G., & Tian, S. (2021). Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH, 2(3), 330-340.


Durán-Soria, S., Pott, D. M., Osorio, S., & Vallarino, J. G. (2020). Sugar signaling during fruit ripening. Frontiers in Plant Science, 11, 1-18. doi: 10.3389/fpls.2020.564917


Gene, L. (1997). Melon (Cucumis melo L.) Fruit nutritional quality and health functionality. HortTechnology, 7(3), 222-227. doi:10.21273/HORTTECH.7.3.222


Hubbard, N. L., Huber, S. C., & Pharr, D. M. (1989). Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiology, 91(4), 1527-1534. doi:10.1104/pp.91.4.1527


Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(28), 1-17. doi:10.1186/s12863-015-0183-2


Liao, G., Li, Y., Wang, H., Liu, Q., Zhong, M., Jia, D., … Xu, X. (2022). Genome-wide identification and expression profiling analysis of sucrose synthase (SUS) and Sucrose Phosphate Synthase (SPS) genes family in Actinidia chinensis and A. eriantha. BMC Plant Biology, 22(215), 1-15. doi:10.1186/s12870-022-03603-y


Lunn, J. E. (2003). Sucrose-phosphatase gene families in plants. Gene, 303(1), 187-196. doi:10.1016/S0378-1119(02)01177-0


Manchali, S., Murthy, K. N. C., Vishnuvardana, & Patil, B. S. (2021). Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants, 10(9), 1-21. doi:10.3390/plants10091755


Nguyen, N. H., & Cheong, J. J. (2018). H2A.Z-containing nucleosomes are evicted to activate AtMYB44 transcription in response to salt stress. Biochemical and Biophysical Research Communications, 499(4), 1039-1043. doi:10.1016/j.bbrc.2018.04.048


Rodriguez, J. C., Shaw, N. L., & Cantliffe, D. J. (2007). Influence of plant density on yield and fruit quality of greenhouse-grown galia muskmelons. HortTechnology, 17(4), 580-585. doi:10.21273/HORTTECH.17.4.580


Sambrook, J., & Russell, D. W. (2001). Molecular cloning. A laboratory manual (3rd ed.). New York, NY: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.


Schemberger, M. O., Stroka, M. A., Reis, L., de Souza Los, K. K., de Araujo, G. A. T., Sfeir, M. Z. T., ... Ayub, R. A. (2020). Transcriptome profiling of non-climacteric ‘yellow’ melon during ripening: insights on sugar metabolism. BMC Genomics, 21(1), 1-20.


Simms, D., Cizdziel, P. E., & Chomczynski, P. (1993). TRIzol: A new reagent for optimal single-step isolation of RNA. Focus, 15(4), 532-535.



Creative Commons License
© The Author(s) 2023. This is an open access publication under CC BY NC licence.