--

12 (1) 2022

Airy-based static limit analysis of structures using stabilized radial point interpolation method


Author - Affiliation:
Le Van Canh - International University, Vietnam National University - HCMC , Vietnam
Ho Le Huy Phuc - International University, Vietnam National University - HCMC , Vietnam
Nguyen Hoang Phuong - International University, Vietnam National University - HCMC , Vietnam
Corresponding author: Le Van Canh - lvcanh@hcmiu.edu.vn
Submitted: 30-07-2021
Accepted: 11-09-2021
Published: 22-03-2022

Abstract
This paper presents a novel formulation for static limit analysis of structures, for which the Airy stress function is approximated using stabilized Radial Point Interpolation Mesh-free method (RPIM). The stress field is determined as second-order derivatives of the Airy function, and the equilibrium equations are automatically satisfied a priori. The so-called Stabilized Conforming Nodal Integration (SCNI) is employed to ensure a present method is truly a mesh-free approach, meaning that all constraints in problems are only enforced at nodes. With the use of the Airy function, SCNI, and Second-Order Cone Programming (SOCP), the size of the resulting problem is kept to be minimum. Several benchmark problems having arbitrary geometries and boundary conditions are investigated. The obtained numerical solutions are compared with those available in other studies to perform the computational aspect of the proposed method.

Keywords
airy stress function; radial point interpolation method; SCNI; SOCP; static limit analysis

Full Text:
PDF

Cite this paper as:

Le, C. V., Ho, P. L. H., & Nguyen, P. H. (2022). Airy-based static limit analysis of structures using  stabilized radial point interpolation method. Ho Chi Minh City Open University Journal of Science – Engineering and Technology, 12(1), 65-78. doi:10.46223/HCMCOUJS.tech.en.12.1.2020.2022 


References

Andersen, E. D., Roos, C., & Terlaky, T. (2003). On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming, 95(2), 249-277.


Andersen, K. D. (1996). An efficient Newton barrier method for minimizing a sum of Euclidean norms. SIAM Journal on Optimization, 6(1), 74-95.


Andersen, K. D., Christiansen, E., & Overton, M. L. (1998). Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific Computing, 19(3), 1046-1062.


Belytschko, T., & Hodge, P. G. Jr. (1970). Plane stress limit analysis by finite elements. Journal of the Engineering Mechanics Division, 96(6), 931-944.


Bleyer, J., & De Buhan, P. (2013). On the performance of non‐conforming finite elements for the upper bound limit analysis of plates. International Journal for Numerical Methods in Engineering, 94(3), 308-330.


Capsoni, A. (1999). A mixed finite element model for plane strain limit analysis computations. Communications in Numerical Methods in Engineering, 15(2), 101-112.


Capsoni, A., & Corradi, L. (1997). A finite element formulation of the rigid-plastic limit analysis problem. International Journal for Numerical Methods in Engineering, 40(11), 2063-2086.


Chen, J. S., Wu, C. T., Yoon, S., & You, Y. (2001). A stabilized conforming nodal integration for Galerkin mesh‐free methods. International Journal for Numerical Methods in Engineering, 50(2), 435-466.


Chen, S., Liu, Y., & Cen, Z. (2008). Lower-bound limit analysis by using the EFG method and non‐linear programming. International Journal for Numerical Methods in Engineering, 74(3), 391-415.


Christiansen, E., & Andersen, K. D. (1999). Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering, 46(8), 1185-1202.


Gaudrat, V. F. (1991). A Newton type algorithm for plastic limit analysis. Computer Methods in Applied Mechanics and Engineering, 88(2), 207-224.


Ho, P. L. H., & Le, C. V. (2020). A stabilized iRBF mesh-free method for quasi-lower bound shakedown analysis of structures. Computers & Structures, 228(1), Article 16157.


Ho, P. L. H., Le, C. V., & Nguyen, P. H. (2021). Kinematic yield design computational homogenization of micro-structures using the stabilized iRBF mesh-free method. Applied Mathematical Modelling, 91(1), 322-334.


Ho, P. L. H., Le, C. V., & Phan, H. D. (2020). A computational homogenization analysis of materials using the stabilized mesh-free method based on the radial basis functions. Journal of Science and Technology in Civil Engineering (STCE)-NUCE, 14(1), 65-76.


Ho, P. L. H., Le, C. V., & Tran, T. C. (2016). Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design. Engineering Analysis with Boundary Elements, 71(1), 92-100.


Ho, P. L. H., Le, C. V., & Tran, T. C. (2018). Limit state analysis of reinforced concrete slabs using an integrated radial basis function based mesh-free method. Applied Mathematical Modelling, 53(1),


Hodge, P. G. Jr., & Belytschko, T. (1968). Numerical methods for the limit analysis of plates. Journal of Applied Mechanics, 35(4), 796-802.


Krabbenhoft, K., & Damkilde, L. (2003). A general non-linear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering, 56(2), 165-184.


Le, C. V., Askes, H., & Gilbert, M. (2012). A locking-free stabilized kinematic EFG model for plane strain limit analysis. Computers & Structures, 106, 1-8.


Le, C. V., Gilbert, M., & Askes, H. (2009). Limit analysis of plates using the EFG method and second‐order cone programming. International Journal for Numerical Methods in Engineering, 78(13), 1532-1552.


Le, C. V., Gilbert, M., & Askes, H. (2010). Limit analysis of plates and slabs using a meshless equilibrium formulation. International Journal for Numerical Methods in Engineering, 83(13), 1739-1758.


Le, C. V., Ho, P. L. H., & Nguyen, H. T. (2016). Airy-based equilibrium mesh-free method for static limit analysis of plane problems. Vietnam Journal of Mechanics, 38(3), 167-179.


Le, C. V., Nguyen, H. X., , H., Bordas, S. P., Rabczuk, T., & Nguyen, H. V. (2010). A cell‐based smoothed finite element method for kinematic limit analysis. International Journal for Numerical Methods in Engineering, 83(12), 1651-1674.


Liu, F., & Zhao, J. (2013). Upper bound limit analysis using radial point interpolation meshless method and nonlinear programming. International Journal of Mechanical Sciences, 70(1), 6-38.


Liu, G. R., & Karamanlidis, D. (2003). Mesh free methods: Moving beyond the finite element method. Applied Mechanics Reviews, 56(2), B17-B18.


Maier, G. (1970). A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica, 5(1), 54-66.


Mohapatra, D., & Kumar, J. (2019). Collapse loads for rectangular foundations by three‐dimensional upper bound limit analysis using radial point interpolation method. International Journal for Numerical and Analytical Methods in Geomechanics, 43(2), 641-660.


MOSEK ApS. (2019). Mosek optimization toolbox for matlab. Retrieved May 10, 2021, from  http://docs.mosek.com/9.0/toolbox/index.html


Nesterov, Y., & Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex programming. Philadelphia, PA: Society for industrial and applied mathematics.


Nguyen, H. D. (1976). Direct limit analysis via rigid-plastic finite elements. Computer Methods in Applied Mechanics and Engineering, 8(1), 81-116.


Nguyen, H. D. (1984). CEPAO - An automatic program for rigid-plastic and elastic-plastic analysis and optimization of frame structures. Engineering Structures, 6(1), 33-51.


Pixin, Z., Mingwan, L., & Kehchih, H. (1991). A mathematical programming algorithm for limit analysis. Acta Mechanica Sinica, 7(3), 267-274.


Sloan, S. W. (1988). Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 12(1), 61-77.


Tin-Loi, F. (1990). A yield surface linearization procedure in limit analysi. Journal of Structural Mechanics, 18(1), 135-149.


Yu, X., & Tin-Loi, F. (2006). A simple mixed finite element for static limit analysis. Computers & Structures, 84(29/30), 1906-1917.


Zhou, S. T., & Liu, Y. H. (2012). Upper-bound limit analysis based on the natural element method. Acta Mechanica Sinica, 28(5), 1398-1415.


Zhou, S., Liu, Y., & Chen, S. (2012). Upper bound limit analysis of plates utilizing the C1 natural element method. Computational Mechanics, 50(5), 543-561.


Andersen, E. D., Roos, C., & Terlaky, T. (2003). On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming, 95(2), 249-277.


Andersen, K. D. (1996). An efficient Newton barrier method for minimizing a sum of Euclidean norms. SIAM Journal on Optimization, 6(1), 74-95.


Andersen, K. D., Christiansen, E., & Overton, M. L. (1998). Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific Computing, 19(3), 1046-1062.


Belytschko, T., & Hodge, P. G. Jr. (1970). Plane stress limit analysis by finite elements. Journal of the Engineering Mechanics Division, 96(6), 931-944.


Bleyer, J., & De Buhan, P. (2013). On the performance of non‐conforming finite elements for the upper bound limit analysis of plates. International Journal for Numerical Methods in Engineering, 94(3), 308-330.


Capsoni, A. (1999). A mixed finite element model for plane strain limit analysis computations. Communications in Numerical Methods in Engineering, 15(2), 101-112.


Capsoni, A., & Corradi, L. (1997). A finite element formulation of the rigid-plastic limit analysis problem. International Journal for Numerical Methods in Engineering, 40(11), 2063-2086.


Chen, J. S., Wu, C. T., Yoon, S., & You, Y. (2001). A stabilized conforming nodal integration for Galerkin mesh‐free methods. International Journal for Numerical Methods in Engineering, 50(2), 435-466.


Chen, S., Liu, Y., & Cen, Z. (2008). Lower-bound limit analysis by using the EFG method and non‐linear programming. International Journal for Numerical Methods in Engineering, 74(3), 391-415.


Christiansen, E., & Andersen, K. D. (1999). Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering, 46(8),
1185-1202.


Gaudrat, V. F. (1991). A Newton type algorithm for plastic limit analysis. Computer Methods in Applied Mechanics and Engineering, 88(2), 207-224.


Ho, P. L. H., & Le, C. V. (2020). A stabilized iRBF mesh-free method for quasi-lower bound shakedown analysis of structures. Computers & Structures, 228(1), Article 16157.


Ho, P. L. H., Le, C. V., & Nguyen, P. H. (2021). Kinematic yield design computational homogenization of micro-structures using the stabilized iRBF mesh-free method. Applied Mathematical Modelling, 91(1), 322-334.


Ho, P. L. H., Le, C. V., & Phan, H. D. (2020). A computational homogenization analysis of materials using the stabilized mesh-free method based on the radial basis functions. Journal of Science and Technology in Civil Engineering (STCE)-NUCE, 14(1), 65-76.


Ho, P. L. H., Le, C. V., & Tran, T. C. (2016). Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design. Engineering Analysis with Boundary Elements, 71(1), 92-100.


Ho, P. L. H., Le, C. V., & Tran, T. C. (2018). Limit state analysis of reinforced concrete slabs using an integrated radial basis function based mesh-free method. Applied Mathematical Modelling, 53(1),


Hodge, P. G. Jr., & Belytschko, T. (1968). Numerical methods for the limit analysis of plates. Journal of Applied Mechanics, 35(4), 796-802.


Krabbenhoft, K., & Damkilde, L. (2003). A general non-linear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering, 56(2), 165-184.


Le, C. V., Askes, H., & Gilbert, M. (2012). A locking-free stabilized kinematic EFG model for plane strain limit analysis. Computers & Structures, 106, 1-8.


Le, C. V., Gilbert, M., & Askes, H. (2009). Limit analysis of plates using the EFG method and second‐order cone programming. International Journal for Numerical Methods in Engineering, 78(13), 1532-1552.


Le, C. V., Gilbert, M., & Askes, H. (2010). Limit analysis of plates and slabs using a meshless equilibrium formulation. International Journal for Numerical Methods in Engineering, 83(13), 1739-1758.


Le, C. V., Ho, P. L. H., & Nguyen, H. T. (2016). Airy-based equilibrium mesh-free method for static limit analysis of plane problems. Vietnam Journal of Mechanics, 38(3), 167-179.


Le, C. V., Nguyen, H. X., , H., Bordas, S. P., Rabczuk, T., & Nguyen, H. V. (2010). A cell‐based smoothed finite element method for kinematic limit analysis. International Journal for Numerical Methods in Engineering, 83(12), 1651-1674.


Liu, F., & Zhao, J. (2013). Upper bound limit analysis using radial point interpolation meshless method and nonlinear programming. International Journal of Mechanical Sciences, 70(1), 6-38.


Liu, G. R., & Karamanlidis, D. (2003). Mesh free methods: Moving beyond the finite element method. Applied Mechanics Reviews, 56(2), B17-B18.


Maier, G. (1970). A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica, 5(1), 54-66.


Mohapatra, D., & Kumar, J. (2019). Collapse loads for rectangular foundations by three‐dimensional upper bound limit analysis using radial point interpolation method. International Journal for Numerical and Analytical Methods in Geomechanics, 43(2), 641-660.


MOSEK ApS. (2019). Mosek optimization toolbox for matlab. Retrieved May 10, 2021, from  http://docs.mosek.com/9.0/toolbox/index.html


Nesterov, Y., & Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex programming. Philadelphia, PA: Society for industrial and applied mathematics.


Nguyen, H. D. (1976). Direct limit analysis via rigid-plastic finite elements. Computer Methods in Applied Mechanics and Engineering, 8(1), 81-116.


Nguyen, H. D. (1984). CEPAO - An automatic program for rigid-plastic and elastic-plastic analysis and optimization of frame structures. Engineering Structures, 6(1), 33-51.


Pixin, Z., Mingwan, L., & Kehchih, H. (1991). A mathematical programming algorithm for limit analysis. Acta Mechanica Sinica, 7(3), 267-274.


Sloan, S. W. (1988). Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 12(1), 61-77.


Tin-Loi, F. (1990). A yield surface linearization procedure in limit analysi. Journal of Structural Mechanics, 18(1), 135-149.


Yu, X., & Tin-Loi, F. (2006). A simple mixed finite element for static limit analysis. Computers & Structures, 84(29/30), 1906-1917.


Zhou, S. T., & Liu, Y. H. (2012). Upper-bound limit analysis based on the natural element method. Acta Mechanica Sinica, 28(5), 1398-1415.


Zhou, S., Liu, Y., & Chen, S. (2012). Upper bound limit analysis of plates utilizing the C1 natural element method. Computational Mechanics, 50(5), 543-561.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.