--

11 (1) 2021

Adsorption of ammonium, nitrite, and nitrate onto rice husk biochar for nitrogen removal


Author - Affiliation:
Vo Thi Minh Thao - Biotechnology Center of Ho Chi Minh City, Vietnam
Nguyen Thi Canh - Ho Chi Minh City University of Technology, Vietnam
Nguyen Lu Nguyet Hang - Ho Chi Minh City University of Technology, Vietnam
Nguyen Minh Khanh - Biotechnology Center of Ho Chi Minh City, Vietnam
Nguyen Ngoc Phi - Biotechnology Center of Ho Chi Minh City, Vietnam
Pham Thi Ai Niem - Biotechnology Center of Ho Chi Minh City, Vietnam
Tran Tuan Anh - Biotechnology Center of Ho Chi Minh City, Vietnam
Nguyen Thi Hanh Nguyen - Biotechnology Center of Ho Chi Minh City, Vietnam
Nguyen Tan Duc - Biotechnology Center of Ho Chi Minh City, Vietnam
Corresponding author: vothiminhthao1993@gmail.com
DOI:10.46223/HCMCOUJS.tech.en.11.1.1622.2021

Abstract
This study aims to investigate the adsorption capacity of ammonium NH4+, nitrite NO2- and nitrate NO3- onto rice husk biochar (RHB) obtained from 550 °C pyrolysis temperature in the context of using low-cost absorbent for recirculating aquaculture system (RAS). Raw RHB at its original size 5–8 mm has been choosen for testing its adsorption capacity as well as several key material properties (pHPZC, surface area, and elemental analysis). From surface functional group analysis, there existed the O–H group (at frequency 3443 cm-1), –CH3 (2360 cm-1), and either –C=O or C=C group (in the range of frequency 1600–1650 cm-1) as well as –COOH (1456 cm‒1) that helped enhance chemical adsorption. The experimental adsorption data has been roughly consistent with Langmuir and Freundlich models that used to calculate the maximum saturated monolayer adsorption capacity Q0max of ammonium, nitrite, and nitrate were 0.1003, 0.2477, and 0.1290 mg/g respectively. Therefore, RHB could be a potential candidate for biofilter application in both targets cost-efficient and sustainable that worth applied at scale.

Keywords
adsorption; biochar; Langmuir; Freundlich; nitrogen compound

Full Text:
PDF

References

Afjeh, M. S., Marandi, G. B., & Zohuriaan‐Mehr, M. J. (2020). Nitrate removal from aqueous solutions by adsorption onto hydrogel‐rice husk biochar composite. Water Environment Research, 92(6), 934-947.


Afkhami, A., Madrakian, T., & Karimi, Z. (2007). The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. Journal of Hazardous Materials, 144(1/2), 427-431.


Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19-33.


Ahmed, S., & Hussain, C. M. (2018). Green and sustainable advanced materials. Volume 2: Applications. Beverly, MA: Wiley-Scrivener.


Appel, J. (1973). Freundlich’s adsorption isotherm. Surface Science, 39(1), 237-244.


Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35.


Bakatula, E. N., Richard, D., Neculita, C. M., & Zagury, G. J. (2018). Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25(8), 7823-7833.


Bolster, C. H., & Hornberger, G. M. (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71(6), 1796-1806.


Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28(3), 386-396.


Bui, A. T. L. (2016). Nghiên cứu chế tạo vật liệu hấp phụ từ xơ dừa để xử lý amoni trong nước thải bệnh viện [Research on fabrication of adsorbent materials from coconut fiber to treat ammonium in hospital wastewater] (Master’s thesis). Đại học Khoa học Tự Nhiên - Đại học Quốc gia Hà Nội.


Crini, G., & Lichtfouse, E. (2018). Green Adsorbents for pollutant removal: Innovative materials. New York, NY: Springer International Publishing.


Cui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2016). Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of The Total Environment, 539, 566-575.


Dai, Y., Zhang, N., Xing, C., Cui, Q., & Sun, Q. (2019). The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere, 223, 12-27.


Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment - Conversion Technologies and applications. Applied Sciences, 10(10), Article 3492.


Essandoh, M., Kunwar, B., Pittman, C. U., Mohan, D., & Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chemical Engineering Journal, 265, 219-227.


FAO. (2020). The state of world fisheries and aquaculture 2020: Sustainability in action. Rome, Italy: FAO.


Ferreira, C. I. A., Calisto, V., Otero, M., Nadais, H., & Esteves, V. I. (2016). Comparative adsorption evaluation of biochars from paper mill sludge with commercial activated carbon for the removal of fish anaesthetics from water in Recirculating Aquaculture Systems. Aquacultural Engineering, 74, 76-83.


Fidel, R. B., Laird, D. A., & Spokas, K. A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8(1), Article 17627.


Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10.


Freundlich, H. (1907). Über die Adsorption in Lösungen [About adsorption in solutions]. Zeitschrift für Physikalische Chemie, 57(1), 385-470.


Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9(12), Article e113888.


Ghosal, P. S., & Gupta, A. K. (2017). Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. Journal of Molecular Liquids, 225, 137-146.


Gladek, E., Fraser, M., Roemers, G., Muñoz, O. S., Kennedy, E., & Hirsch, P. (2017). The global food system: An analysis. Retrieved January 10, 2021, from https://www.metabolic.nl/publication/global-food-system-an-analysis/


Hafshejani, L. D., Hooshmand, A., Naseri, A. A., Mohammadi, A. S., Abbasi, F., & Bhatnagar, A. (2016). Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 95, 101-111.


Hamed, M. M., Yakout, S. M., & Hassan, H. S. (2013). Solid phase extraction of nitrate and nitrite anions using naturally and available sorbent. Journal of Radioanalytical and Nuclear Chemistry, 295(1), 697-708.


Han, J. G., Zhao, G., Dou, L. S., Jing, Y. J., & Zhu, Y. L. (2013). Adsorption of ammonium nitrogen in water by rice husk charcoal: A simulation study. Advanced Materials Research, 781-784, 2063-2066.


Herath, I., Kumarathilaka, P., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R. A., & Vithanage, M. (2016). Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials, 225, 280-288.


Hu, X., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., … Ma, C. (2020). Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Science of The Total Environment, 707, Article 135544.


Huang, X., Liu, Y., Liu, S., Tan, X., Ding, Y., Zeng, G., … Zheng, B. (2016). Effective removal of Cr( vi ) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances, 6(1), 94-104.


International Biochar Initiative. (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. Retrieved January 11, 2021, from https://biochar-international.org/characterizationstandard/


Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50-56.


Kizito, S., Wu, S., Kirui, W. K., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of The Total Environment, 505, 102-112.


Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.


Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). London, UK: Routledge, Taylor & Francis Group.


Liang, P., Yu, H., Huang, J., Zhang, Y., & Cao, H. (2016). The review on adsorption and removing ammonia nitrogen with biochar on its mechanism. MATEC Web of Conferences, 67, 1-11.


Lu, L., Yu, W., Wang, Y., Zhang, K., Zhu, X., Zhang, Y., … Chen, B. (2020). Application of biochar-based materials in environmental remediation: From multi-level structures to specific devices. Biochar, 2(1), 1-31.


Milla, O. V., Rivera, E. B., Huang, W.-J., Chien, C.-, C., & Wang, Y.-M. (2013). Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. Journal of Soil Science and Plant Nutrition, 13(2), 251-266.


Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresource Technology, 160, 191-202.


Nguyen, L. H., Van, H. T., Nguyen, Q. T., Nguyen, T. H., Nguyen, T. B. L., Nguyen, V. Q., … Le, H. S. (2021). Paper waste sludge derived-hydrochar modified by iron (III) chloride for effective removal of Cr(VI) from aqueous solution: Kinetic and isotherm studies. Journal of Water Process Engineering, 39, Article 101877.


Ogata, F., Nagai, N., Kariya, Y., Nagahashi, E., Kobayashi, Y., Nakamura, T., & Kawasaki, N. (2018). Adsorption of nitrite and nitrate ions from an aqueous solution by Fe–Mg-type hydrotalcites at different molar ratios. Chemical and Pharmaceutical Bulletin, 66(4), 458-465.


Poor, C., & Mohamed, M. (2020). Effect of biochar on metals and nutrient removal in bioretention systems. In World environmental and water resources congress 2020 (pp. 73-83).


Pham, L. T. N. (2016). Nghiên cứu biến tính than hoạt tính chế tạo từ các phế phẩm nông nghiệp làm vật liệu hấp phụ xử lý amoni trong nước [Study on modified activated carbon fabricated from agricultural residues as an adsorbent for treatment of ammonium in water]. Tạp Chí Khoa Học Kỹ Thuật và Môi Trường, 52, 129-137.


Shabir, M. (2010). Effect of electrolytes on the adsorption of nitrite and nitrate from aqueous solutions by activated carbon. Journal of Applied Sciences and Environmental Management, 14(3), 5-11.


Shukla, N., Sahoo, D., & Remya, N. (2019). Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. Journal of Cleaner Production, 235, 1073-1079.


Takeuchi, T. (2017). Application of Recirculating Aquaculture Systems in Japan. Tokyo, Japan: Springer.


Timmons, M. B., Guerdat, T., & Vinci, B. J. (2018). Recirculating aquaculture (4th ed.). New York, NY: Ithaca Publishing Company LLC.


Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., & Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88-116.


Van der Bruggen, B. (2015). Freundlich isotherm [Friendly isothermal]. In E. Drioli & L. Giorno (Eds.), Encyclopedia of membranes (pp. 1-2). Berlin, Heidelberg: Springer.


Vu, M. T., & Trinh, T. V. (2016). Nghiên cứu khả năng xử lý amoni trong môi trường nước của than sinh học từ lõi ngô biến tính bằng H3PO4 và NaOH [Study on the ability to treat ammonium in aqueous environment of biochar from maize modified by H3PO4 and NaOH]. Tạp Chí Khoa Học ĐHQGHN: Các Khoa Học Trái Đất và Môi Trường, 32(1S), 274-281.


Wan, D., Liu, H., Liu, R., Qu, J., Li, S., & Zhang, J. (2012). Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/Al ratio. Chemical Engineering Journal, 195-196, 241-247.


Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391-395.


Worch, E. (2012). Adsorption technology in water treatment: Fundamentals, processes, and modeling. Berlin, Germany: Walter de Gruyter.


Wu, P., Wang, Z., Wang, H., Bolan, N. S., Wang, Y., & Chen, W. (2020). Visualizing the emerging trends of biochar research and applications in 2019: A scientometric analysis and review. Biochar, 2(2), 135-150.


Yakout, S. M., & Mostafa, A. A. (2014). Removal of nitrite from aqueous solution by active carbon: Adsorption kinetics modeling. Journal of Animal and Veterinary Advances, 13(9), 558-563.


Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O., … Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, Article 116303.



View Counter: Abstract | 5 | times
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.