--

15(5)2025

Public sentiment on Covid-19 vaccination rollout through Twitter content analysis


Author - Affiliation:
Guilbert Nicanor Abiera Atillo - Negros Oriental State University, Dumaguete City
Corresponding author: Guilbert Nicanor Abiera Atillo - guilbertnicanor.atillo@norsu.edu.ph
Submitted: 31-03-2024
Accepted: 26-05-2024
Published: 18-10-2024

Abstract
This study looks at what people are saying about Covid-19 vaccines on Twitter. Text mining techniques and sentiment analysis were used to analyze the tweets and see what patterns and trends emerged. The study found that most tweets were positive, showing hope and confidence in vaccines. People believe vaccines can help reduce deaths, severe illness, and the spread of the virus. However, the result also noticed that people express different emotions like sadness, fear, joy, and surprise in their tweets. These emotions can change based on how people feel and what’s happening around them. Understanding how people think about Covid-19 vaccines can help policymakers, doctors, and community leaders. It can guide them in addressing concerns, sharing accurate information, and building vaccine trust. This can ultimately help in the fight against the pandemic.

Keywords
Covid pandemic; sentiment analysis; text mining; Twitter; vaccination

Full Text:
PDF

References

Addawood, A., Alsuwailem, A., Alohali, A., Alajaji, D., Alturki, M., Alsuhaibani, J., & Aljabli, F. (2020, December). Tracking and understanding public reaction during Covid-19: Saudi Arabia as a use case. In Proceedings of the 1st Workshop on NLP for Covid-19 (Part 2) at EMNLP 2020.


Ananiadou, S., Kell, D. B., & Tsujii, J. I. (2006). Text mining and its potential applications in systems biology. Trends in Biotechnology, 24(12), 571-579.


Antons, D., Grünwald, E., Cichy, P., & Salge, T. O. (2020). The application of text mining methods in innovation research: Current state, evolution patterns, and development priorities. R&D Management, 50(3), 329-351.


Aslam, F., Awan, T., Syed, J., Kashif, A., & Parveen, M. (2020). Sentiments and emotions evoked by news headlines of the coronavirus disease (Covid-19) outbreak. Humanities and Social Sciences Communications, 7(1), 1-9. https://doi.org/10.1057/s41599-020-0523-3


Babu, G. A., & Srinivasu, B. (2019). A conceptual based approach in text mining: Techniques and applications. International Journal of Innovative Technology and Exploring Engineering, 8(7), 1779 -1781.


Blazhevski, I. (2022). Ethical consideration in usage of Twitter data. Science International Journal, 1(1), 27-32.


Boon-Itt, S., & Skunkan, Y. (2020). Public perception of the Covid-19 pandemic on Twitter: Sentiment analysis and topic modeling study. JMIR Public Health and Surveillance, 6(4), 1-17. https://doi.org/10.2196/21978


Borst, J., Wencker, T., & Niekler, A. (2022). Using text classification with a Bayesian correction for estimating overreporting in the creditor reporting system on climate adaptation finance. https://www.wider.unu.edu/sites/default/files/Events/PDF/Papers/Borst_Wencker_Niekler_Climate_Adaptation_Finance%20%281%29.pdf


Cambria, E. (2016). Affective computing and sentiment analysis. IEEE Intelligent System, 31(2), 102-107.


Chehal, D., Gupta, P., & Gulati, P. (2020). Covid-19 pandemic lockdown: An emotional health perspective of Indians on Twitter. International Journal of Social Psychiatry, 67(1), 64-72. https://doi.org/10.1177/0020764020940741


Cilliers, L. (2022). Ethical challenges to consider when collecting data on Twitter. SAGE Publications.


Colón-Ruiz, C., Segura-Bedmar, I., & Martínez, P. (2019). Análisis de Sentimiento en el dominio salud: Analizando comentarios sobre fármac. Procesamiento del Lenguaje Natural, 63(1), 15-22.


De Caro, W. (2020). Infodemia and Covid-19: a text mining analysis. European Journal of Public Health, 30(5), 28-29. https://doi.org/10.1093/eurpub/ckaa165.065


Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge University Press.


Gong, L. (2018). Application of biomedical text mining. Artificial Intelligence: Emerging Trends and Applications, 1(1), 417-433.


Greenwood, B. (2014). The contribution of vaccination to global health: Past, present, and future. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1645), Article 20130433.


Gupta, A., Dengre, V., Kheruwala, H. A., Shah, M. (2020). Comprehensive review of text-mining applications in finance. Financial Innovation, 6(1), 5-25.


He, T. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102.


Hon, J., & Park, S. (2019). The identification of marketing performance using text mining of airline review data. Mobile Information Systems, 2019(1). 1-8. https://doi.org/10.1155/2019/1790429


Irfan, R., King, C. K., Grages, D., Ewen, S., Khan, S. U., Madani, S. A., Kolodziej, J., Wang, L., Chen, D., Rayes, A., Tziritas, N., Xu, C.-Z., Zomaya, A. Y., Alzahrani, A. S., & Li, H. (2015). A survey on text mining in social networks. The Knowledge Engineering Review, 30(2), 157-170. https://doi.org/10.1017/s0269888914000277


Kaushik, A., & Naithani, S. (2016). A comprehensive study of text mining approach. International Journal of Computer Science and Network Security (IJCSNS), 16(2), 69-76.


Keith-Norambuena, B., Lettura, E., & Villegas, C. (2019). Sentiment analysis and opinion mining applied to scientific paper reviews. Intelligent Data Analysis, 23(1), 191-214. https://doi.org/10.3233/ida-173807


Komasawa, N., Terasaki, F., Nakano, T., Saura, R., & Kawata, R. (2020). A text mining analysis of perceptions of the Covid‐19 pandemic among final‐year medical students. Acute Medicine & Surgery, 7(1), 1-6. https://doi.org/10.1002/ams2.576


Li, N., & Wu, D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems, 48(2), 354-368. https://doi.org/10.1016/j.dss.2009.09.003


Lin, C., Tu, P., & Beitsch, L. M. (2020). Confidence and receptivity for Covid-19 vaccines: A rapid systematic review. Vaccines, 9(1), 1-32. https://doi.org/10.3390/vaccines9010016


Magtangob, R. M. M., & Palaoag, T. D. (2023). Assessment of the healthcare administration of senior citizens from survey data using sentiment analysis. International Journal of Advanced Computer Science and Applications, 14(2), 389-394.


Mahmood, N., Nasir, S. B., & Hefferon, K. (2020). Plant-based drugs and vaccines for Covid-19. Vaccines, 9(1), 1-16. https://doi.org/10.3390/vaccines9010015


Miranda, C. H., Pla Santamaría, F., Oliver, L. F. H., & Guzmán, J. (2017). Análisis de sentimientos a nivel de aspecto usandoontologías y aprendizaje automático. Procesamiento del Lenguaje Natural, 59(1), 49-56.


Mohan, T. (2002). Bioinformatics: The cutting edge of modern biology. Test.pharmabiz.com. http://test.pharmabiz.com/PrintArticle.aspx?aid=16774&sid=21


Nie, B., & Sun, S. (2017). Using text mining techniques to identify research trends: A case study of design research. Applied Sciences, 7(4), 401-423.


Pawar, M. P., & Agarkar, P. (2020). Twitter sentiment analysis using textual information and diffusion patterns. International Journal of Advance Scientific Research and Engineering Trends, 5(7), 59-62.


Piedrahita-Valdés, H., Piedrahita-Castillo, D., Bermejo-Higuera, J., Guillem-Saiz, P., Bermejo-Higuera, J. R., Guillem-Saiz, J., Sicilia-Montalvo, J. A., & Machío-Regidor, F. (2021). Vaccine hesitancy on social media: Sentiment analysis from June 2011 to April 2019. Vaccines, 9(1), 1-12.


Preethi, B., & Radha, P. (2017). A survey paper on text mining-techniques, applications, and issues. International Journal of Computer Engineering, 1(1), 46-51.


Prema, R., & Muthukumar, V. P. (2019). An overview of text mining applications and techniques. Journal of Emerging Technologies and Innovative Research (JETIR), 6(3), 289-292.


Puri, N., Coomes, E. A., Haghbayan, H., & Gunaratne, K. (2020). Social media and vaccine hesitancy: new updates for the era of Covid-19 and globalized infectious diseases. Human Vaccines & Immunotherapeutics, 16(11), 2586-2593.


Qi, Y. (2013). Text mining in bioinformatics. International Journal of Information Retrieval Research, 3(2), 30-39. https://doi.org/ 10.4018/ijirr.2013040102


Research Guides. (2021). Sources for text-mining: Social media data. Hkbu.libguides.com. https://hkbu.libguides.com/c.php?g=920466&p=6639370


Saleh, S. N., McDonald, S. A., Basit, M. A., Kumar, S., Arasaratnam, R. J., Perl, T. M., Lehmann, C. U., & Medford, R. J. (2023). Public perception of Covid-19 vaccines through analysis of Twitter content and users. Vaccine, 41(33), 4844-4853.


Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using text mining techniques for extracting information from research articles. Intelligent Natural Language Processing: Trends and Applications, 1(1), 373-397.


Salloum, S., Al-Emran, M., Monem, A., & Shaalan, K., (2017). A survey of text mining in social media: Facebook and Twitter perspectives. Advances in Science, Technology and Engineering Systems Journal, 2(1), 127-133. Https://doi.org/10.25046/aj020115


Samuel, J., Ali, G., Rahman, M., Esawi, E., & Samuel, Y. (2020). Covid-19 public sentiment insights and machine learning for tweets classification. Information, 11(6), 314-318.


Singh, T., Kumari, M., Pal, T., & Chauhan, A. (2017). Current trends in text mining for social media. International Journal of Grid and Distributed Computing, 10(6), 11-28. https://doi.org/10.14257/ijgdc.2017.10.6.02


Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: Techniques, applications, and issues. International Journal of Advanced Computer Science and Applications, 7(11), 414-418.


Tsapatsoulis, N., & Djouvas, C. (2019). Opinion mining from social media short texts: Does collective intelligence beat deep learning? Frontiers in Robotics and AI, 5(1), 1-10. https://doi.org/ 10.3389/frobt.2018.00138


Tucker, P., & Czapla, C. S. (2020). Post-Covid stress disorder: Another emerging consequence of the global pandemic. Psychiatric Times, 38(1), 1-4.


Verma, T., Renu, R., & Gaur, D. (2014). Tokenization and filtering process in rapidminer. International Journal of Applied Information Systems, 7(2), 16-18.


World Health Organization. (2021). Ten threats to global health in 2019. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019


Zanini, N., & Dhawan, V. (2015). Text mining: An introduction to theory and some applications. Research Matters, 19(1), 38-45.


Zhong, B., Jiang, Z., Xie, W., & Qin, X. (2020). Association of social media use with mental health conditions of nonpatients during the Covid-19 outbreak: Insights from a national survey study. Journal of Medical Internet Research, 22(12), 1-6.



Creative Commons License
© The Author(s) 2025. This is an open access publication under CC BY NC licence.