--

13 (2) 2023

Exploring consumer opinions on vegetarian food by sentiment analysis method


Author - Affiliation:
Tran Thi Huong Thao - University of Economics and Law, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Ho Trung Thanh - University of Economics and Law, Ho Chi Minh City Vietnam National University, Ho Chi Minh City , Vietnam
Corresponding author: Ho Trung Thanh - thanhht@uel.edu.vn
Submitted: 25-04-2022
Accepted: 30-06-2022
Published: 18-10-2022

Abstract
The study’s aim is to explore consumer opinions on vegetarian food in the electronic commerce area by the qualitative research method, in more detail, based on utilizing the lexicon-based approach to analyze sentiment. The sentiment of five aspects including price, package, shipment, brand, and quality is considered detecting from customers’ reviews. Besides, the rating tags are also categorized as an opinion (positive, negative, neutral) based on the star number. The dataset includes 17,892 customer reviews. The findings found that the customers’ sentiments are 20.8% positive, 0.7% negative, and 78.5% neutral for an average of five aspects. Product quality is the most concerning of the five aspects of customer comments. This aspect also makes up 8,672 positive comments. Besides, quality and package aspects are more than 5,000 positively attached tags and shipment has the most negative tags taking 26 rating tags. Furthermore, the average of the stars is 4.94 stars, which is close to reaching the peak of 5.0 stars. This study demonstrates that the view of customers for aspects about vegan products according to text comments, the quality aspect has a significant number of positive comments than other aspects. Hence, the business might understand the significant factors to deal with them.

JEL codes
C61; C63; C67

Keywords
lexicon-based approach; product review; sentiment analysis; vegetarian food; Vietnamese market

Full Text:
PDF

Cite this paper as:

Tran, T. T. H., & Ho, T. T. (2023). Exploring consumer opinions on vegetarian food by sentiment analysis method. Ho Chi Minh City Open University Journal of Science – Economics and Business Administration, 13(2), 69-84. doi:10.46223/HCMCOUJS.econ.en.13.2.2256.2023


References

Alqaryouti, O., Siyam, N., Monem, A. A., & Shaalan, K. (2020). Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics, Vol. ahead-of-print No. ahead-of-print. doi: 10.1016/j.aci.2019.11.003


Anoop, V. S., & Asharaf, S. (2020). Aspect-oriented sentiment analysis: a topic modeling-powered approach. Journal of Intelligent Systems, 29(1), 1166-1178. doi:10.1515/jisys-2018-0299


Bahri, S., Bahri, P., & Lal, S. (2018). A novel approach of sentiment classification using emoticons. Procedia Computer Science, 132, 669-678. doi:10.1016/j.procs.2018.05.067


Berg, J., & Henriksson, M. (2020). In search of the ‘good life’: Understanding online grocery shopping and everyday mobility as social practices. Journal of Transport Geography, 83(C), 102633-10264. doi:10.1016/j.jtrangeo.2020.102633


Choi, H. Y., & Joung, H. W. (2018). Exploring restaurant selection attributes of vegetarian customers. Culinary Science & Hospitality Research, 24(7), 83-88. doi:10.20878/cshr.2018.24.7.009


Choi, H., Joung, H. W., Choi, E. K., & Kim, H. S. (2021). Understanding vegetarian customers: The effects of restaurant attributes on customer satisfaction and behavioral intentions. Journal of Foodservice Business Research, 25(3), 353-376. doi:10.1080/15378020.2021.1948296


Clara, A. Y., Adiwijaya, A., & Purbolaksono, M. D. (2020). Aspect based sentiment analysis on beauty product review using random forest. Journal of Data Science and Its Applications, 3(2), 67-77. doi:10.34818/jdsa.2020.3.58


Cooper, K., Dedehayir, O., Riverola, C., Harrington, S., & Alpert, E. (2022). Exploring consumer perceptions of the value proposition embedded in vegan food products using text analytics. Sustainability, 14(4), Article 2075. doi:10.3390/su14042075


Dang, T. V., Nguyen, K. V., & Nguyen, N. L. T. (2018). A supervised method for aspect-based sentiment analysis. In The Fifth International Workshop on Vietnamese Language and Speech Processing (VLSP) (pp 21-24). Ho Chi Minh City, Vietnam: University of Information Technology, VNU-HCM, Vietnam


Das, S. R., & Chen, M. Y. (2007). Yahoo! for Amazon: Sentiment parsing from small talk on the web. For Amazon: Sentiment Parsing from Small Talk on the Web, 53(9), 1375-1388. doi:10.2139/ssrn.276189


de Kok, S., Punt, L., van den Puttelaar, R., Ranta, K., Schouten, K., & Frasincar, F. (2018). Review-aggregated aspect-based sentiment analysis with ontology features. Progress in Artificial Intelligence7(4), 295-306. doi:10.1007/s13748-018-0163-7


Dinu, M., Abbate, R., Gensini, G. F., Casini, A., & Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640-3649. doi:10.1080/10408398.2016.1138447


Expertmarketresearch. (n.d.). Global vegan food market, expert market research. Retrieved April 03, 2022, from https://www.expertmarketresearch.com/reports/vegan-food-market


Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1), 1-14. doi:10.1186/s40537-015-0015-2


Farkhod, A., Abdusalomov, A., Makhmudov, F., & Cho, Y. I. (2021). LDA-based topic modeling sentiment analysis using Topic/Document/Sentence (TDS) model. Applied Sciences, 11(23), 11091-11106. doi:10.3390/app112311091


Fortune Business Insights. (2022). Vegan food market size, share & Covid-19 impact analysis, product type (Vegan meat, ... stores, online retails, and others), and regional forecast, 2021-2028. Retrieved April 03, 2022, from https://www.fortunebusinessinsights.com/vegan-food-market-106421


Gary, D. (2021). The online vegan marketplace is helping independent brands thrive. Retrieved April 03, 2022, from https://www.forbes.com/sites/garydrenik/2021/04/06/the-online-vegan-marketplace-is-helping-independent-brands-thrive/?sh=405daf4345df


Github. (2017). VietSentiWordNet a quick and simple method to find opinion for Vietnamese text. Retrieved January 25, 2022, from https://github.com/sonvx/VietSentiWordNet


Github. (2019). Building a program to build Vietnamese stopwords based on IDF using scikit-learn. Retrieved January 12, 2022, from https://github.com/ltkk/vietnamese-stopwords/blob/%20master/make_stopwords.py


Github. (2020). Aspect sentiment analysis Vietnam. Retrieved January 25, 2022, from https://github.com/TorRient/ASA-VN


Han, Y., Liu, M., & Jing, W. (2020). Aspect-level drug reviews sentiment analysis based on double BiGRU and knowledge transfer. IEEE Access8, 21314-21325. doi:10.1109/ACCESS.2020.2969473


Holbrook, M. B., & Hirschman, E. C. (1982). The experiential aspects of consumption: Consumer fantasies, feelings, and fun. Journal of Consumer Research, 9(2), 132-140


Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. AAAI, 4(4), 755-760.


Hung, C., & Cao, Y. X. (2019). Sentiment classification of Chinese cosmetic reviews based on integration of collocations and concepts. The Electronic Library, 30(1), 155-169. doi:10.1108/EL-04-2019-0093


Kotler, P. (2000). Marketing management: The millennium edition (Vol. 199). Upper Saddle River, NJ: Prentice Hall


Le, V. N. B., & Huh, J. H. (2021). Applying sentiment product reviews and visualization for BI systems in Vietnamese E-commerce website: Focusing on Vietnamese context. Electronics, 10(20), 2481-2501. doi:10.3390/electronics10202481


Leitzmann, C. (2003). Nutrition ecology: The contribution of vegetarian diets. The American Journal of Clinical Nutrition, 78(3), 657S-659S. doi:10.1093/ajcn/78.3.657S


Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. doi:10.1509/jm.15.0420


Liu, B. (2020). Sentiment analysis: Mining opinions, sentiments, and emotions. In Studies in natural language processing (pp. 01-17). Chicago, IL: University of Illinois, Cambridge University Press.


Lu, L., & Gursoy, D. (2017). Does offering an organic food menu help restaurants excel in competition? An examination of diners’ decision-making. International Journal of Hospitality Management, 63, 72-81. doi:10.1016/j.ijhm.2017.03.004


Mai Long & Le, B. (2018). Aspect-based sentiment analysis of vietnamese texts with deep learning. In Asian conference on intelligent information and database systems (pp. 149-158). Cham, Switzerland: Springer.


Nandal, N., Tanwar, R., & Pruthi, J. (2020). Machine learning based aspect level sentiment analysis for Amazon products. Spatial Information Research28(5), 601-607. doi:10.1007/s41324-020-00320-2


Ngo, T. V. Q., Vo, D. T. A., Ngo, P. A., Nguyen, A. D. M., Le, T. M., To, L. T. P., & Nguyen, P. T. T. (2021). Factors influencing on consumer’s decision on vegetarian diets in Vietnam. The Journal of Asian Finance, Economics, and Business, 8(2), 485-495. doi:10.13106/jafeb.2021.vol8.no2.0485


Nguyen, B., Nguyen, H. V., & Ho, T. (2021). Sentiment analysis of customer feedback in online food ordering services. Business Systems Research, 12(2), 46-59. doi:10.2478/bsrj-2021-0018


Nguyen, K. N. D., & Duong, T. H. (2019). One-document training for Vietnamese sentiment analysis. International Conference on Computational Data and Social Networks, 189-200. doi:10.1007/978-3-030-34980-6_21


Nguyen, N. D. (2021). E-commerce report quarter III/2021: E-commerce race between Vietnam, Thailand and Malaysia. Retrieved February 20, 2022, from https://iprice.vn/xu-huong/insights/bao-cao-tmdt-quy-iii2021-cuoc-dua-tmdt-giua-viet-nam-thai-lan-va-malaysia


Nguyen, P. H., Ngo, T. D., Phan, D. A., Dinh, T. P., & Huynh, T. Q. (2008). Vietnamese spelling detection and correction using Bi-gram, Minimum Edit Distance, SoundEx algorithms with some additional heuristics. IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication Technologies, 96-102. doi:10.1109/RIVF.2008.4586339


Nguyen, Q. K. P., & Nguyen, K. V. (2020). Exploiting Vietnamese social media characteristics for textual emotion recognition in Vietnamese. International Conference on Asian Language Processing (IALP), 277-279. doi:10.48550/arXiv.2009.11005


Nguyen, T. L. T., Nguyen, X., & Dinh, D. (2016). Vietnamese plagiarism detection method. Proceedings of the Seventh Symposium on Information and Communication Technology, 44-51. doi:10.1145/3011077.3011109


Nilashi, M., Ahmadi, H., Arji, G., Alsalem, K. O., Samad, S., Ghabban, F., & Alarood, A. A. (2021). Big social data and customer decision making in vegetarian restaurants: A combined machine learning method. Journal of Retailing and Consumer Services, 62(C), 102630-102648. doi:10.1016/j.jretconser.2021.102630


Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing, 10, 79-86. doi:10.3115/1118693.1118704


Petaasia. (2017). Hồ Chí Minh named one of the top 10 most vegan-friendly cities in Asia 2017 [Ho Chi Minh named one of the top 10 most vegan-friendly cities in Asia 2017]. Retrieved April 03, 2022, from https://www.petaasia.com/media/ho-chi-minh-named-one-top-10-most-vegan-friendly-cities-asia


Pilař, L., Stanislavská, L. K., Kvasnička, R., Hartman, R., & Tichá, I. (2021). Healthy food on Instagram social network: Vegan, homemade and clean eating. Nutrients, 13(6), 1991-2010. doi:10.3390/nu13061991


Piryani, R., Gupta, V., Singh, V. K., & Ghose, U. (2017). A linguistic rule-based approach for aspect-level sentiment analysis of movie reviews. In Advances in computer and computational sciences (pp. 201-209). doi:10.1007/978-981-10-3770-2_19


Research and Markets. (2020). Vietnam skin care products market by type, demographics, age group and sales channel: Opportunity analysis and industry forecast, 2021-2027. Retrieved January 20, 2022, from https://www.researchandmarkets.com/reports/5157263/vietnam-skin-care-products-market-by-type#src-pos-12


Rivera, M., & Shani, A. (2013). Attitudes and orientation toward vegetarian food in the restaurant industry: An operator’s perspective. International Journal of Contemporary Hospitality Management, 25(7), 1049-1065. doi:10.1108/IJCHM-07-2012-0116


Sharma, R., Nigam, S., & Jain, R. (2014). Determination of polarity of sentences using sentiment orientation system. International journal of Advances in Computer Science and Technology (IJACST) WARSE3(3), 182-187.


Statista. (2021). Value of the worldwide vegan food market from 2020 to 2021 with a forecast for 2025. Retrieved April 03, 2022, from https://www.statista.com/statistics/1280275/value-of-the-global-vegan-food-market


Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267-307. doi:10.1162/COLI_a_00049


Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 417-424. doi:10.48550/arXiv.cs/0212032


Vanaja, S., & Belwal, M. (2018). Aspect-level sentiment analysis on e-commerce data. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), 1275-1279. doi:10.1109/ICIRCA.2018.8597286


Verain, M. C., Dagevos, H., & Antonides, G. (2015). Sustainable food consumption. Product choice or curtailment? Appetite, 91, 375-384. doi:10.1016/j.foodqual.2021.104267


Voxco. (n.d.). What is the connection between digital transformation and customer experience. Retrieved April 03, 2022, from https://www.voxco.com/blog/what-is-the-connection-between-digital-transformation-and-customer-experience


Vu, T. T., Pham, T. H., Luu, T. C., & Ha, T. Q. (2012). A feature-based opinion mining model on product reviews in Vietnamese. In R. Katarzyniak, T. F. Chiu, C. F. Hong & N. T. Nguyen (Eds.), Semantic methods for knowledge management and communication (vol. 381). doi:10.1007/978-3-642-23418-7_3


Wang, W., Pan, S. J., Dahlmeier, D., & Xiao, X. (2016). Recursive neural conditional random fields for aspect-based sentiment analysis. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 616-626. doi:10.18653/v1/D16-1059


Wiebe, J. (2000). Learning subjective adjectives from corpora. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence (pp. 735-740). Palo Alto, CA: American Association for Artificial Intelligence


Wikipedia. (2022). List of emoticons. Retrieved January 16, 2022, from https://en.wikipedia.org/wiki/List_of_emoticons


Wikipedia. (2022). Rules for placing accent marks in the national language script. Retrieved January 16, 2022, from https://vi.wikipedia.org/wiki/Quy_tắc_đặt_dấu_thanh_trong_chữ_quốc_ngữ


Yauris, K., & Khodra, M. L. (2017). Aspect-based summarization for game review using double propagation. 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), 1-6. doi:10.1109/ICAICTA.2017.8090997



Creative Commons License
© The Author(s) 2023. This is an open access publication under CC BY NC licence.