--

12 (2) 2022

Coordinating supply and demand applied Bass diffusion modelling


Author - Affiliation:
Nguyen Thi Bich Tram - Ho Chi Minh City Open University, Ho Chi Minh City , Vietnam
Corresponding author: Nguyen Thi Bich Tram - tram.ntb@ou.edu.vn
Submitted: 10-01-2022
Accepted: 08-02-2022
Published: 23-06-2022

Abstract
Demand management concerns what customers need and want, while supply management focuses on producing products/services to fulfill demand. It is challenging in coordinating demand and supply from both sides. Multi-method modeling, which is an interesting combination between system dynamics and agent-based models, is adapted to address this issue through the Bass diffusion model to replicate a non-competitive supply chain, including a retailer, a wholesaler, and a factory in this study. The research findings show that there is a bullwhip effect on the supply chain due to sudden changes in demand impacted by marketing efforts, namely advertising, words of mouth, and electronic words of mouth. It is recommended that in the process of sales and operations planning, businesses should implement, measure, and estimate marketing effectiveness corresponding with supply capabilities. Additionally, through the study, the strengths and weaknesses of the multi-method simulation in facilitating business research reflect through multiple scenarios running with cost and time efficiency, as well as the validity of the study findings associated with modelers’ decisions on the model’s level of simplicity and elaboration.

Keywords
Bass diffusion model; marketing efforts; multi-method modelling; supply chain management; S&OP

Full Text:
PDF

Cite this paper as:

Nguyen, T. T. B. (2022). Coordinating supply and demand applied Bass diffusion modelling. Ho Chi Minh City Open University Journal of Science – Economics and Business Administration, 12(2), 82-95. doi:10.46223/HCMCOUJS.econ.en.12.2.2148.2022


References

Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton, NJ: Princeton University Press.


Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215-227. doi:10.1287/mnsc.15.5.215


Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the bass model fits without decision variables. Marketing Science, 13(3), 203-223. doi:10.1287/mksc.13.3.203


Borshchev, A. (2013). The big book of simulation modeling - AnyLogic simulation software. Retrieved October 10, 2021, from http://www.anylogic.com/big-book-of-simulation-modeling


Bui, K. T. (2022). The positive electronic word of mouth: A research based on the relational mediator meta-analytic framework in electronic marketplace. In P. Nanda, V. K. Verma, S. Srivastava, R. K. Gupta & A. P. Mazumdar (Eds.), Data engineering for smart systems (pp. 147-157). Singapore: Springer.


Chan, F. T. S., & Chan, H. K. (2005). Simulation modeling for comparative evaluation of supply chain management strategies. The International Journal of Advanced Manufacturing Technology, 25(9/10), 998-1006. doi:10.1007/s00170-003-1920-7


Chandrasekaran, A., Linderman, K., Sting, F. J., & Benner, M. J. (2016). Managing R&D project shifts in high-tech organizations: A multi-method study. Production and Operations Management, 25(3), 390-416. doi:10.1111/poms.12410


Demirel, E., Özelkan, E. C., & Lim, C. (2018). Aggregate planning with flexibility requirements profile. International Journal of Production Economics, 202, 45-58. doi:10.1016/j.ijpe.2018.05.001


Esper, T. L., Ellinger, A. E., Stank, T. P., Flint, D. J., & Moon, M. (2010). Demand and supply integration: A conceptual framework of value creation through knowledge management. Journal of the Academy of Marketing Science, 38(1), 5-18. doi:10.1007/s11747-009-0135-3


Harrison, J. R., Lin, Z., Carroll, G. R., & Carley, K. M. (2007). Simulation modeling in organizational and management research. Academy of Management Review, 32(4), 1229-1245. doi:10.5465/amr.2007.26586485


Hogan, J. E., Lemon, K. N., & Libai, B. (2004). Quantifying the ripple: Word-of-mouth and advertising effectiveness. Journal of Advertising Research, 44(3), 271-280. doi:10.1017/S0021849904040243


Jacobs, R., & Chase, R. B. (2018). Operations and supply chain management (15th ed.). New York, NY: McGraw Hill.


Juan, A. A., & Fonseca, P. (2012). Simulation. Retrieved December 10, 2021, from https://upcommons.upc.edu/bitstream/handle/2117/21036/simulation.pdf?sequence=1&isAllowed=y


Law, A. M. (2014). Simulation modeling and analysis (5th ed.). Tucson, AZ: McGraw Hill Education.


Levinthal, D. A., & Marengo, L. (2016). Simulation modelling and business strategy research. In M. Augier & D. J. Teece (Eds.), The palgrave encyclopedia of strategic management (pp. 1-5). London, UK: Palgrave Macmillan UK.


Lim, L. L., Alpan, G., & Penz, B. (2014). Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach. International Journal of Production Economics, 151, 20-36. doi:10.1016/j.ijpe.2014.01.011


Milichovský, F., & Šimberová, I. (2015). Marketing effectiveness: Metrics for effective strategic marketing. Engineering Economics, 26(2), 211-219. doi:10.5755/j01.ee.26.2.3826


Mogaji, E., Soetan, T. O., & Kieu, T. A. (2020). The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers. Australasian Marketing Journal, 29(3), 235-242. doi:10.1016/J.AUSMJ.2020.05.003


Mota, R. de O., Filho, M. G., Osiro, L., Ganga, G. M. D., & Mendes, G. H. de S. (2021). Unveiling the relationship between drivers and capabilities for reduced time-to-market in start-ups: A multi-method approach. International Journal of Production Economics, 233, Article 108018. doi:10.1016/j.ijpe.2020.108018


Nguyen, L. T. C., Tran, T. A., Moslehpour, M., & Do, X. T. T. (2019). Exploring the impact of traditional and electronic word of mouth on travel intention. Proceedings of the 2019 5th International Conference on E-Business and Applications - ICEBA 2019, 83-87. doi:10.1145/3317614.3317617


Nguyen, T. T. B. (2021). Which node of supply chain suffers mostly to disruption in the pandemic? Journal of Distribution Science, 19(11), 59-68. doi:10.15722/jds.19.11.202111.59


Nguyen, T. T. B. (2022). Simulation modeling - An effective method in doing business and management research. Ho Chi Minh City Open University Journal of Science-Economics and Business Administration, 12(1), 3-19. doi:10.46223/HCMCOUJS.econ.en.12.1.1916.2022


Schmitt, A. J., & Singh, M. (2012). A quantitative analysis of disruption risk in a multi-echelon supply chain. International Journal of Production Economics, 139(1), 22-32. doi:10.1016/j.ijpe.2012.01.004


Tong, X., Lai, K., Zhu, Q., Zhao, S., Chen, J., & Cheng, T. C. E. (2018). Multinational enterprise buyers’ choices for extending corporate social responsibility practices to suppliers in emerging countries: A multi-method study. Journal of Operations Management, 63(1), 25-43. doi:10.1016/j.jom.2018.05.003


Tuomikangas, N., & Kaipia, R. (2014). A coordination framework for sales and operations planning (S&OP): Synthesis from the literature. International Journal of Production Economics, 154, 243-262. doi:10.1016/j.ijpe.2014.04.026


Wagner, S. M., Ullrich, K. K. R., & Transchel, S. (2014). The game plan for aligning the organization. Business Horizons, 57(2), 189-201. doi:10.1016/j.bushor.2013.11.002


Zhang, B., Fu, Z., Huang, J., Wang, J., Xu, S., & Zhang, L. (2018). Consumers’ perceptions, purchase intention, and willingness to pay a premium price for safe vegetables: A case study of Beijing, China. Journal of Cleaner Production, 197, 1498-1507. doi:10.1016/j.jclepro.2018.06.273


Zhang, H., Yuan, X., & Song, T. H. (2020). Examining the role of the marketing activity and eWOM in the movie diffusion: The decomposition perspective. Electronic Commerce Research, 20(3), 589-608. doi:10.1007/s10660-020-09423-2



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.